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Chapter 1

Introduction

The Helical3D program is used for the analysis of external and internal spur and helical gear
pairs. The Users manual describes the various features of the Helical3D package. It provides
detailed information to help you run the program. The Validation manual describes through
examples some of the applications of the Helical3D program.

Various modeling aspects related to rim models and spline connections is discussed. Also,
comparison of contact pressure and transmission error values obtained from Calyx with those
obtained from analytical solutions is made. Test cases are documented so as to study the effect of
various parameters such as tip radius, tooth thickness, number of face elements and displacement
order on the stresses for helical gears and also the convergence of the stress values for different
types of mesh templates. Finally the manual discusses the application of the Helical3D program
related to fatigue theory and life prediction in helical gears.

Users should read the Users manual before trying out the examples in the Validation manual.
All the files referred to in the Validation manual are in the Working directory created during
the time of installation.
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Chapter 2

Calculation of contact pressure
for a spur gear model using Calyx

Following test cases are conducted to study the effects of tooth tip modifications and crowning
on the contact pressure values for a spur gear pair and also to compare those values obtained
from Calyx with theoretical results. A detailed procedure for calculating the contact pressure
using the Helical3D program in each case is given.

2.1 Contact pressure for spur gear model with no tooth
tip modifications

This first example compares Calyx’s predictions of contact pressure on unmodified spur gear
teeth with those obtained from Hertz’s equations. Simple involute calculations are used to
obtain radii of curvature for Hertz’s model.

2.1.1 The example file

After hitting the CONNECT button, choose the CONTACTPRESSURE directory under the
SAMPLES directory. This in turn is located in the Working directory WORKDIR selected by the
User at the installation time. Load the file nomodification.ses from the CONTACTPRESSURE
directory.

As the session file name suggests no tooth tip modifications are applied at the gear or pinion
tooth for this case. All the data describing the model is entered in the submenus of the EDIT
menu. The data for the example problem is given in English units (force is in lbf , and length is
in in). The outputs also appear in English units. Table 2.1 shows the English units for common
physical quantities used to run the test cases.

Tables 2.2 through 2.9 show the data to be entered in the EDIT menu for running the analysis.
No assembly errors are considered for the pinion and the gear. Also there are no bearings in the
model.
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Table 2.1: Units used for the test cases

Physical quantity English
LENGTH in
TIME s
ANGLE deg or rad
MASS lbf.s2/in
MOMENT OF INERTIA lbf.s2.in
STIFFNESS lbf/in
SPEED RPM or rad/s
TORQUE lbf.in
YOUNGS MODULUS lbf/in2

DENSITY lbf.s2/in4

LOAD lbf
STRESSES psi

Table 2.2: System configuration parameters

Item Description
MESHTYPE CALYX3D
CENTERDIST 3.00
OFFSET 0.00
ROTX 0.00
ROTY 0.00
INPUT PINION
TORQUEINPUT 1000.00
RPMINPUT -3.00
MU 0.00
MAGRUNOUTGEAR 0.00
ANGRUNOUTGEAR 0.00
MAGRUNOUTPINION 0.00
ANGRUNOUTPINION 0.00
BACKSIDECONTACT FALSE

Table 2.3: Pinion input data

Item Description
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00
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Table 2.4: Pinion tooth input data

Item Description
NTEETH 20
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.15708
FACEWIDTH 1
HAND LEFT
HELIXANGLE 0.00
RACKTIPRAD 0.02
OUTERDIA 2.18
ROOTDIA 1.76
RIMDIA 1.40
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE pinion.msh
TPLFILE medium.tpl

Table 2.5: Pinion rim input data

Item Description
RIMTYPE SIMPLE
RIMDIA 1.40
INNERDIA 1.20
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 8
ELEMTYPE LINEAR
NDIVSRADIAL 2
NTHETA 32
NDIVSWIDTH 4

Table 2.6: Gear input data

Item Description
TYPE EXTERNAL
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00
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Table 2.7: Gear tooth input data

Item Description
NTEETH 40
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.15708
FACEWIDTH 1
HAND RIGHT
HELIXANGLE 0.00
RACKTIPRAD 0.02
OUTERDIA 4.18
ROOTDIA 3.78
RIMDIA 3.40
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE gear.msh
TPLFILE medium.tpl

Table 2.8: Gear rim input data

Item Description
RIMTYPE SIMPLE
RIMDIA 3.40
INNERDIA 2.40
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 16
ELEMTYPE QUADRATIC
NDIVSRADIAL 4
NTHETA 64
NDIVSWIDTH 4
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Table 2.9: Setup input data

Item Description
SEPTOL 0.01
NPROFDIVS 8
NFACEDIVS 12
DSPROF 0.001
ZEROINITIAL TRUE
INITIALTIME -0.8
NRANGES 1
RANGE 1
SOLMETHOD STATIC
NTIMESTEPS 15
DELTATIME 0.1
STARTSPEEDFACTOR 1.0
STARTTORQUEFACTOR 1.0
ENDTORQUEFACTOR 1.0
SAVEPERIODICALLY FALSE
OUTPUTRESTART FALSE
POSTPROCWRITE TRUE
POSTFILENAME postprocnotipmod.dat
NSTEPSWRITE 1



8 Calculation of contact pressure for a spur gear model using Calyx

Table 2.10: Contact menu inputs used to obtain the plot of pressure against time

Item Description
SURFACEPAIR GEAR SURFACE1 PINION SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
BEGINSTEP 1
ENDSTEP 15
SPROFBEGIN 0.0
SPROFEND 48.0
TFACEBEGIN -1.0
TFACEEND 1.0
OUTPUTTOFILE FALSE

Table 2.11: GRIDPRHIST menu inputs used to obtain the grid pressure histogram for tooth
no.1 at t=0.0

Item Description
SURFACEPAIR GEAR SURFACE1 PINION SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
TIMESTEP 8
OUTPUTTOFILE FALSE

2.1.2 Obtaining the contact pressure from the postprocessing menu

During the analysis, a post processing data file is created in the working directory. The CON-
TACT command in the postprocessing menu is used to obtain the contact pressure at a particular
instant. At t = 0, the pinion tooth no.1 is in contact with the gear tooth no.1 at the pitch point.
Figure 2.1 shows the contact pressure plot against time. Table 2.10 shows the inputs in the
contact menu used to obtain this plot. The exact value of the contact pressure at the pitch point
can be obtained from the GRIDPRHIST plot at t = 0 as shown in Figure 2.2. The menu for
such a plot is shown in Table 2.11.

The contact pressure obtained from calyx is 1.5961× 105psi.



2.1 Contact pressure for spur gear model with no tooth tip modifications 9

-0
.8

00
00

0
-0

.6
00

00
0

-0
.4

00
00

0
-0

.2
00

00
0

-0
.0

00
00

0
0.

20
00

00
0.

40
00

00
0.

60
00

00
0.

80
00

00

90
00

0.
00

00
00

10
00

00
.0

00
00

0

11
00

00
.0

00
00

0

12
00

00
.0

00
00

0

13
00

00
.0

00
00

0

14
00

00
.0

00
00

0

15
00

00
.0

00
00

0

16
00

00
.0

00
00

0

17
00

00
.0

00
00

0

T
im

e

C
on

ta
ct

 P
re

ss
ur

e 
on

 s
ur

fa
ce

 p
ai

r:
 P

IN
IO

N
_S

U
R

FA
C

E
1_

G
E

A
R

_S
U

R
FA

C
E

1

1.
68

40
19

E
+

00
5:

 T
oo

th
 1

 o
f 

PI
N

IO
N

 a
t t

im
e=

-2
.0

00
00

0E
-0

01
, S

PR
O

F=
2.

58
08

93
E

+
00

1,
 T

FA
C

E
=

 -
9.

60
00

00
E

-0
01

Figure 2.1: Graph of contact pressure against time for pinion tooth no.1
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Contact Pressure at Time = 0.000000E+000, Range=[0.000000E+000,1.596110E+005]. Each Div.=2.000000E+004

Tooth 1

Figure 2.2: Grid pressure histogram for pinion tooth no.1 at t=0 (Contact Pressure =
1.596110E+005 at Time = 0.000000E+000. Range of contact pressure is from 0.000000E+000
to 1.596110E+005 and each division corresponds to 2.000000E+004)
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2.1.3 Contact pressure from theoretical calculations

Relative Radius of curvature

As shown in Figure 2.3 an involute curve is evolved from origin point A on a base circle. The
point P on a taut line containing point B describes the curve. The taut line is tangent to the
base circle at point B, and normal to the involute curve at P. The length of this line segment
BP is the Radius of curvature(R) of the involute curve at point P and is equal in length to the
arc AB. The angle θ subtended by the arc AB is the roll angle of the involute to the point P.

For the Pinion,

Pitch diameter, Dp = 2.0in

Pitch radius, rp = 1.0in

Pressure angle, φ = 20.0o

Base radius, rb = rpcosφ = 0.9396in

Involute roll angle at pitch point, θp =
√

(
rp

rb
)2 − 1 = 0.3642rad

Radius of curvature, Rp = rb × θp = 0.342in

For the Gear,

Pitch diameter, Dp = 4.0in

Pitch radius, rp = 2.0in

Pressure angle, φ = 20.0o

Base radius, rb = rpcosφ = 1.879in

Involute roll angle at pitch point, θp =
√

(
rp

rb
)2 − 1 = 0.3642rad

Radius of curvature, Rg = rb × θp = 0.6839in

Hence,

The Relative radius of curv, ρ =
RpRg

Rp + Rg
= 0.216in (2.1)

Calculating the Contact load

The total load on all teeth = Torque/rb

The total contact load per unit length, P =
Torque/rb

Facewidth
= 1.064× 103lbf/in (2.2)

The user can find the contact load acting on individual teeth using the TOOTHLOAD or the
TOOTHLDHIST command in the postprocessing menu. Figure 2.4 shows the plot of contact
load against time for the pinion tooth no.1. Table 2.12 shows the TOOTHLOAD menu to obtain
this plot. Figure 2.5 shows the tooth load histogram. Table 2.13 shows the data entered in to
the TOOTHLDHIST menu in order to obtain this plot. The value of the contact load at the
pitch point from the tooth load plot is 1.0641× 103lbf .
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Figure 2.3: Drawing defining the radius of curvature(R) and the roll angle(θ)

Table 2.12: Toothload menu inputs used to obtain the plot of load against time

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
BEGINSTEP 1
ENDSTEP 15

Table 2.13: Toothldhist menu inputs used to obtain the tooth load histogram

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TIMESTEP 8
HISTCOLOR BLACK
AUTOSCALE TRUE
OUTPUTTOFILE FALSE
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Calculating the Contact Pressure

For the present case, since we have not applied any tooth modifications, the contact between
the pinion and gear tooth can be assumed to be a two dimensional contact of cylindrical bodies.
Using the Hertz theory of elastic contact [20] for such cases the maximum pressure, po is given
by,

po =

√
PEeq

πρ
(2.3)

where,

po = Maximum Contact pressure

P = Contact load = 1.0641× 103lbf/in

ρ = Relative radius of curvature = 0.216in

νp = Pinion Poissons ratio = 0.3
νg = Gear Poissons ratio = 0.3

Ep = Pinion Young’s modulus = 3× 107psi

Eg = Gear Young’s modulus = 3× 107psi

1
Eeq

=
1− ν2

p

Ep
+

1− ν2
g

Eg
= 1.6483516× 107psi−1

Substituting the values, the theoretical(Hertz) contact pressure is 1.5648× 105psi compared
to 1.5961× 105psi obtained from Calyx. The contact pressure prediction at the mid-face (Range
of TFACE is from −0.5 to 0.5) from Calyx is 1.5843 × 105psi. The difference in the predicted
contact pressure at mid-face as compared to the end of the face is 1.18× 103psi.

Table 2.14 shows the comparison of contact pressure values for pinion tooth no.1 obtained
from Calyx and the theoretical calculations at various roll angles. The spreadsheet used to carry
out the calculations shown in Table 2.14 is in file nomodification.xls in the CONTACTPRESSURE
directory. A graph comparing Calyx’s and Hertz’s predictions is shown in Figure 2.6. This
example shows that the predictions made by Calyx are very close to Hertz pedictions. Calyx
predicts contact pressures about 3% higher than the Hertz formula.
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Table 2.14: Contact pressure values obtained from calyx and theoretical calculations for various
pinion roll angles

Time (s) Pinion
involute
roll
angle
(deg)

Gear
involute
roll
angle
(deg)

Pinion
radius
of curv
(in)

Gear
radius
of curv
(in)

Effective
radius
of curv
(in)

Contact
load
(lbf/in)

Hertz con-
tact pres-
sure (psi)

Calyx
contact
pressure
(psi)

-0.7 8.2539 27.1539 0.1353 0.8906 0.1175 495.34 1.4871 ×105 1.5243 ×105

-0.6 10.0539 26.2539 0.1648 0.8611 0.1383 526.80 1.4132 ×105 1.4499 ×105

-0.5 11.8539 25.3539 0.1944 0.8316 0.1575 563.73 1.3700 ×105 1.3994 ×105

-0.4 13.6539 24.4539 0.2239 0.8021 0.1750 596.79 1.3374 ×105 1.3611 ×105

-0.3 15.4539 23.5539 0.2534 0.7726 0.1908 629.82 1.3158 ×105 1.3416 ×105

-0.2 17.2539 22.6539 0.2829 0.7430 0.2049 1064.1 1.6506 ×105 1.6840 ×105

-0.1 19.0539 21.7539 0.3124 0.7135 0.2173 1064.1 1.6028 ×105 1.6340 ×105

0.0 20.8539 20.8539 0.3420 0.6840 0.2280 1064.1 1.5648 ×105 1.5961 ×105

0.1 22.6539 19.9539 0.3715 0.6545 0.2370 1064.1 1.5348 ×105 1.5683 ×105

0.2 24.4539 19.0539 0.4010 0.6249 0.2442 681.39 1.2097 ×105 1.2290 ×105

0.3 26.2539 18.1539 0.4305 0.5954 0.2498 568.83 1.0928 ×105 1.1084 ×105

0.4 28.0539 17.2539 0.4601 0.5659 0.2537 537.37 1.0540 ×105 1.0715 ×105

0.5 29.8539 16.3539 0.4896 0.5364 0.2559 500.44 1.0128 ×105 1.0300 ×105

0.6 31.6539 15.4539 0.5191 0.5069 0.2564 467.38 9.7782 ×104 9.9784 ×104

0.7 33.4539 14.5539 0.5486 0.4773 0.2552 434.35 9.4485 ×104 9.7802 ×104
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2.2 Contact pressure for spur gear model with linear tooth
tip modification

Applying a surface modification affects stresses in two ways. Firstly, it changes the load distri-
bution between teeth. Secondly, it affects the curvature of the surfaces. This example illustrates
this effect.

2.2.1 The example file

Load the file lineartipmodification.ses from the CONTACTPRESSURE directory.
To study the effect of linear tip relief on contact pressure, a linear tip modification is applied

on pinion and gear tooth as shown in Figures 2.7 and 2.8. Tables 2.15 and 2.16 show the
modification menus for pinion and gear teeth respectively. All the other menus including the
setup menu are similar to the case with no tooth modifications.

Figure 2.7: Linear tip relief applied to the pinion tooth

Table 2.15: Modification menu for the pinion tooth

Item Description
LINEARTIPMOD TRUE
ROLLLINEARTIPMOD 27.25
MAGLINEARTIPMOD 0.0005
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Figure 2.8: Linear tip relief applied to the gear tooth

Table 2.16: Modification menu for the gear tooth

Item Description
LINEARTIPMOD TRUE
ROLLLINEARTIPMOD 19.60
MAGLINEARTIPMOD 0.0005

2.2.2 Obtaining the contact pressure from the postprocessing menu

After the analysis is complete, a post processing data file is created in the working directory.
CONTACT command in the postprocessing menu is used to obtain the contact pressure at a
particular instant. Figure 2.9 shows the plot of contact pressure against time for pinion tooth
no.1. The involute roll angle,θ at the start, θi, and at the tip, θo, of the linear tip relief for
the pinion tooth is 27.25o and 33.68o respectively. At t = 0, the pinion tooth no.1 is in contact
with the gear tooth no.1 at the pitch point. In order to look at the contact pressure value
for the pinion in the tip relief region a value of θ somewhere between the start and the tip of
the modified tooth is considered. The contact pressure value from the postprocessing menu at
t = 0.5s is 1.1832 × 105psi. The exact value of the contact pressure at t=0.5s can be obtained
by plotting the GRIDPRHIST plot as shown in Figure 2.10.
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Figure 2.9: Graph of contact pressure against time for pinion tooth no.1
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Contact Pressure at Time = 5.000000E-001, Range=[0.000000E+000,1.183206E+005]. Each Div.=2.000000E+004

Tooth 1

Figure 2.10: Grid pressure histogram for pinion tooth no.1 at t=0.5s (Contact Pressure at Time
= 5.000000E-001s. Range of contact pressure is from 0.000000E+000 to 1.183206E+005 and
each division corresponds to 2.000000E+004
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2.2.3 Obtaining contact pressure from theoretical calculations

Relative Radius of curvature

S.Vijayakar [14] showed that applying tip relief changes the curvature of the surface significantly.
The following derivation gives the formula for calculating the curvatures for an involute with
linear tip modification.

If θ is the involute roll angle at a particular point on a involute curve, then the position
vector and its derivatives for a point r(θ) on an unmodified involute curve are given by:

rx(θ) = rb

√
1 + θ2(sin(θ − tan−1 θ))

ry(θ) = rb

√
1 + θ2(cos(θ − tan−1 θ))

drx

dθ
= rbθ(sin(θ))

dry

dθ
= rbθ(cos(θ))

d2rx

dθ2
= rb(sin(θ) + θ cos(θ))

d2ry

dθ2
= rb(cos(θ)− θ sin(θ))

The unit normal vector to the involute and its derivatives are:

nx(θ) = − cos(θ)
ny(θ) = + sin(θ)
dnx

dθ
= +sin(θ)

dny

dθ
= +cos(θ)

d2nx

dθ2
= +cos(θ)

d2ny

dθ2
= − sin(θ)

If e(θ) is the modification for the involute at a particular roll angle θ, E is the magnitude of the
linear modification at the tip, and θi and θo are the roll angles at the start of modification and
at the tip, respectively, then the value of linear modification in the relieved part of the involute
is:

e(θ) = E
θ − θi

θo − θi

de

dθ
=

E

θo − θi

d2e

dθ2
= 0.0
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The coordinate vector R and its derivatives for the modified involute is given by:

Rx(θ) = rx(θ)− nx(θ)e(θ)
Ry(θ) = ry(θ)− ny(θ)e(θ)
dRx

dθ
=

drx

dθ
− dnx

dθ
e(θ)− nx(θ)

de

dθ
dRy

dθ
=

dry

dθ
− dny

dθ
e(θ)− ny(θ)

de

dθ
d2Rx

dθ2
=

d2rx

dθ2
− d2nx

dθ2
e(θ)− 2

dnx

dθ

de

dθ
− nx

d2e

dθ2

d2Ry

dθ2
=

d2ry

dθ2
− d2ny

dθ2
e(θ)− 2

dny

dθ

de

dθ
− ny

d2e

dθ2

The unit normal vector for the modified involute is:

Nx(θ) =
−dRy

dθ√
(dRx

dθ )2 + (dRy

dθ )2

Ny(θ) =
dRx

dθ√
(dRx

dθ )2 + (dRy

dθ )2

The curvature of this modified involute is given by:

K(θ) =
Nx(θ)d2Rx

dθ2 + Ny(θ)d2Ry

dθ2

(dRx

dθ )2 + (dRy

dθ )2

If the curvatures, Kpinion and Kgear of the pinion and gear are calculated in this manner, then
the relative radius of curvature between the two is given by:

ρ =
1

Kpinion + Kgear
(2.4)

Note that for our study case we will examine an instant of time where we need to apply the
modified curvature only for the pinion tooth.
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Calculating the value of θ at 0.5s

Angular velocity of the pinion, ωp = 3.0rpm = 0.31415rad/s.

Therefore,

Rotation of the pinion in 0.5s = 0.5× 0.31415 = 0.1570rad.

At t = 0.0(pitch point), the involute roll angle = 0.36427rad.

Thus,

At t = 0.5s, the pinion involute roll angle, θ = 0.36427 + 0.1570 = 0.5213rad.

At t = 0.5s, the gear involute roll angle, θ = 0.36427− ( rbp

rbg
)0.1570 = 0.2854rad.

For the pinion:

Base radius of the pinion is:

rbp = 0.9396in

Involute roll angle at 0.5s is:

θ = 29.85o = 0.5213rad

Involute roll angle at the start of modification is:

θi = 27.21o = 0.475rad

Involute roll angle at the tip of modification is:

θo = 33.68o = 0.588rad

Modification at the tip is:

E = 0.0005in

If e(θ) is the modification for the involute at a roll angle θ = 29.85o, then,

e(θ) = 0.000204in
de

dθ
= 0.004424in/rad

d2e

dθ2
= 0.00
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The position vector and its derivatives for a point r(θ) on an unmodified involute curve are
given by:

rx(θ) = 0.043118
ry(θ) = 1.058724
drx

dθ
= 0.243731

dry

dθ
= 0.424651

d2rx

dθ2
= 0.892422

d2ry

dθ2
= 0.571260

The unit normal vector to the involute and its derivatives are:

nx(θ) = −0.867297
ny(θ) = 0.497791
dnx

dθ
= 0.497791

dny

dθ
= 0.867297

d2nx

dθ2
= 0.867297

d2ny

dθ2
= −0.497791

The coordinate vector R and its derivatives for the modified involute is given by:

Rx(θ) = 0.043295
Ry(θ) = 1.058622
dRx

dθ
= 0.247467

dRy

dθ
= 0.422272

d2Rx

dθ2
= 0.887840

d2Ry

dθ2
= 0.563687

The unit vector for the modified involute is:

Nx(θ) = −0.862761
Ny(θ) = 0.505611

The curvature of this modified involute is:

Kp = 2.007843in−1
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For the gear:

Base radius of the gear is:

rbg = 1.8793in

Involute roll angle at 0.5s is:

θ = 16.3539o = 0.2854rad

The curvature of this unmodified involute is:

Kg =
1

rbgθ
= 1.864162in−1

Thus, the relative radius of curvature is:

ρ =
1

(Kp + Kg)
= 0.258264in
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Calculating the Contact load

The user can find the contact load on individual teeth using the TOOTHLOAD or the TOOTHLD-
HIST command in the postprocessing menu. Table 2.17 shows the TOOTHLOAD menu inputs
used to obtain the contact load value at t = 0.5s. Figure 2.11 shows the tooth load histogram
at t = 0.5s. Table 2.18 shows the TOOTHLDHIST menu inputs used to obtain this plot. The
value of contact load at t = 0.5s from the tooth load plot is 6.6757× 102lbf .

Contact load per unit length =
Contact load
Facewidth

= 6.6757× 102lbf/in (2.5)

Table 2.17: Toothload menu to obtain the contact load at t=0.5s

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
BEGINSTEP 13
ENDSTEP 13

Table 2.18: Toothldhist menu to obtain the tooth load histogram at t=0.5s

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TIMESTEP 13
HISTCOLOR BLACK
AUTOSCALE TRUE
OUTPUTTOFILE FALSE
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Figure 2.11: Toothload histogram at t=0.5s
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Calculating the Contact Pressure

For the present case, since we have not applied any lead modifications the contact between the
pinion and gear tooth can be assumed to be a two dimensional contact of cylindrical bodies.
Using the Hertz theory of elastic contact for such cases the maximum pressure, po is given by,

po =

√
PEeq

πρ
(2.6)

where,

po = Maximum Contact pressure

P = Contact load per unit length = 6.6757× 102lbf/in

ρ = Relative radius of curvature = 0.258264in

νp = Pinion Poissons ratio = 0.3
νg = Gear Poissons ratio = 0.3

Ep = Pinion Young’s modulus = 3× 107psi

Eg = Gear Young’s modulus = 3× 107psi

1
Eeq

=
1− ν2

p

Ep
+

1− ν2
g

Eg

Eeq from above = 1.648351× 107psi

Substituting the above values the theoretical contact pressure is 1.16457× 105psi, compared
with 1.18321× 105psi predicted by Calyx.

Table 2.19 shows the comparison of contact pressure values for pinion tooth no.1 obtained
from Calyx and the Hertz calculations at various roll angles. The spreadsheet used to carry out
the calculations shown in Table 2.19 is in file lineartipmodification.xls in the CONTACTPRESSURE
directory. A graph comparing Calyx’s and Hertz’s predictions is shown in Figure 2.12. The peak
at t = 0.14s corresponding to Invoute angle for gear = 19.60o obtained in the contact pres-
sure plot from Calyx is due to the start of the linear modification at the gear tooth. At this
point the radius of curvature tends to 0.0 and hence we get a high value of contact pressure
(1.7650 × 105psi). Hertz formula does not take in to consideration the change in curvature at
the start of modification. Hence we do not see the peak in the contact pressure predictions from
the Hertz theory. Figure 2.13 shows a plot of contact pressure against time obtained from Calyx
in the time range from 0.0s to 0.2s. The peak is clearly seen at t = 0.14s. This example shows
that the predictions made by Calyx are very close to Hertz pedictions.
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Figure 2.13: A plot of contact pressure against time obtained from Calyx in the time range from
0.0s to 0.2s
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Table 2.19: Contact pressure values for linear tip modified tooth obtained from calyx and theo-
retical calculations for various pinion roll angles

Time(s) Pinion
involute
roll
angle
(deg)

Gear
involute
roll
angle
(deg)

Pinion
radius
of curv
(in)

Gear
radius
of curv
(in)

Effective
radius
of curv
(in)

Contact
load
(lbf/in)

Hertz con-
tact pres-
sure (psi)

Calyx
contact
pressure
(psi)

-0.70 8.2539 27.1539 0.1353 0.8975 0.1176 22.015 3.1336 ×104 4.0065 ×104

-0.60 10.0539 26.2539 0.1648 0.8683 0.1385 154.255 7.6422 ×104 7.7455 ×104

-0.50 11.8539 25.3539 0.1944 0.8391 0.1578 399.800 1.1528 ×105 1.1706 ×105

-0.40 13.6539 24.4539 0.2239 0.8099 0.1754 642.476 1.3861 ×105 1.4057 ×105

-0.30 15.4539 23.5539 0.2534 0.7808 0.1913 872.134 1.5464 ×105 1.5687 ×105

-0.20 17.2539 22.6539 0.2829 0.7517 0.2055 1064.18 1.6480 ×105 1.6770 ×105

-0.10 19.0539 21.7539 0.3124 0.7226 0.2181 1064.18 1.5998 ×105 1.6257 ×105

0.00 20.8539 20.8539 0.3420 0.6935 0.2290 1064.18 1.5612 ×105 1.5858 ×105

0.02 21.2139 20.6739 0.3479 0.6781 0.2299 1064.18 1.5582 ×105 1.5749 ×105

0.04 21.5739 20.4939 0.3538 0.6722 0.2318 1064.18 1.5519 ×105 1.5724 ×105

0.06 21.9339 20.3139 0.3597 0.6663 0.2336 1064.18 1.5460 ×105 1.5677 ×105

0.08 22.2939 20.1339 0.3656 0.6604 0.2353 1064.18 1.5403 ×105 1.5712 ×105

0.10 22.6539 19.9539 0.3715 0.6545 0.2370 1064.18 1.5348 ×105 1.6248 ×105

0.12 23.0139 19.7739 0.3774 0.6486 0.2385 1064.18 1.5297 ×105 1.7139 ×105

0.14 23.3739 19.5939 0.3833 0.6427 0.2401 1064.18 1.5248 ×105 1.7650 ×105

0.16 23.7339 19.4139 0.3892 0.6368 0.2415 1064.18 1.5202 ×105 1.7001 ×105

0.18 24.0939 19.2339 0.3951 0.6309 0.2429 1064.18 1.5159 ×105 1.5629 ×105

0.20 24.4539 19.0539 0.4010 0.6249 0.2442 1064.18 1.5118 ×105 1.5428 ×105

0.30 26.2539 18.1539 0.4305 0.5954 0.2498 1042.16 1.4792 ×105 1.5088 ×105

0.40 28.0539 17.2539 0.4692 0.5659 0.2565 914.303 1.3674 ×105 1.4261 ×105

0.50 29.8539 16.3539 0.4980 0.5364 0.2582 667.574 1.1645 ×105 1.1832 ×105

0.60 31.6539 15.4539 0.5269 0.5069 0.2583 423.727 9.2763 ×104 9.4124 ×104

0.70 33.4539 14.5539 0.5558 0.4773 0.2568 192.965 6.2787 ×104 6.3045 ×104
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2.3 Contact pressure for spur gear model with quadratic
tooth tip modification

2.3.1 The example file

Load the file quadtipmodification.ses from the CONTACTPRESSURE directory.
To study the effect of quadratic tip relief on contact pressure, a quadratic tip modification is

applied on pinion and gear tooth as shown in Figures 2.14 and 2.15. Tables 2.20 and 2.21 show
the modification menus for pinion and gear teeth respectively. All the other menus including the
setup menu are similar to the case with no tooth modifications.

Figure 2.14: Quadratic tip relief applied to the pinion tooth

Table 2.20: Modification menu for the pinion tooth

Item Description
QUADTIPMOD TRUE
ROLLQUADTIPMOD 27.25
MAGQUADTIPMOD 0.0005

2.3.2 Obtaining the contact pressure from the postprocessing menu

After the analysis is complete, a post processing data file is created in the working directory.
CONTACT command in the postprocessing menu is used to obtain the contact pressure at a
particular instant. Figure 2.16 shows a plot of contact pressure against time for pinion tooth
no.1. Involute roll angle, θ at the start, θi and at the tip, θo of the quadratic tip relief for the
pinion tooth is 27.25o and 33.68o respectively. At t = 0, the pinion tooth no.1 is in contact with
the gear tooth no.1 at the pitch point. So as to look at the contact pressure value for the pinion
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Figure 2.15: Quadratic tip relief applied to the gear tooth

Table 2.21: Modification menu for the gear tooth

Item Description
QUADTIPMOD TRUE
ROLLQUADTIPMOD 19.60
MAGQUADTIPMOD 0.0005

in the tip relief region a value of θ somewhere between the start and the tip of the modified
tooth is considered. For our calculations we have taken the involute roll angle for the pinion, θp

as 29.85o (analysis time, t = 0.5s). At this point the involute roll angle for the gear, θg is 11.80o.
The contact pressure value from the postprocessing menu at t = 0.5s is 1.241 × 105psi. The
exact value of the contact pressure at t = 0.5s can be obtained by plotting the GRIDPRHIST
plot as shown in Figure 2.17.
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Figure 2.16: Plot of contact pressure against time for pinion tooth no.1
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Contact Pressure at Time = 5.000000E-001, Range=[0.000000E+000,1.241488E+005]. Each Div.=2.000000E+004

Tooth 1

Figure 2.17: Grid pressure histogram for pinion tooth no.1 at t=0.5s (Contact Pressure at
Time= 5.000000E-001 is 1.241488E+005s. Range of contact pressure is from 0.000000E+000 to
1.241488E+005 and each division corresponds to 2.000000E+004
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2.3.3 Contact pressure from theoretical calculations

Relative Radius of curvature

If e(θ) is the quadratic modification for the involute at a particular roll angle θ, E is the mag-
nitude of the modification at the tip, and θi and θo are the involute roll angles at the start of
the modification and at the tip, respectively, then the value of the quadratic modification in the
relieved part of the involute is given by:

e(θ) = E(
θ − θi

θo − θi
)2

de

dθ
= 2E

(θ − θi)
(θo − θi)2

d2e

dθ2
= 2E

1
(θo − θi)2

Note that for our study case we will need to apply the modified curvature only for the pinion
tooth.

For the pinion:

Base radius of the pinion is:

rbp = 0.9396in

Involute roll angle at 0.5s is:

θ = 29.85o = 0.5213rad

Involute roll angle at the start of modification is:

θi = 27.21o = 0.475rad

Involute roll angle at the tip of modification is:

θo = 33.68o = 0.588rad

Modification at the tip is:

E = 0.0005in

If e(θ) is the quadratic modification for the involute at a roll angle θ = 29.85o, then,

e(θ) = 8.3037× 10−5in

de

dθ
= 0.003606in/rad

d2e

dθ2
= 0.078314in/(rad)2
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The position vector and its derivatives for a point r(θ) on an unmodified involute curve are
given by:

rx(θ) = 0.043118
ry(θ) = 1.058724
drx

dθ
= 0.243731

dry

dθ
= 0.424651

d2rx

dθ2
= 0.892422

d2ry

dθ2
= 0.571260

The unit normal vector to the involute and its derivatives are:

nx(θ) = −0.867297
ny(θ) = 0.497791
dnx

dθ
= 0.497791

dny

dθ
= 0.867297

d2nx

dθ2
= 0.867297

d2ny

dθ2
= −0.497791

The coordinate vector R and its derivatives for the modified involute is given by:

Rx(θ) = 0.0431907
Ry(θ) = 1.058683
dRx

dθ
= 0.246818

dRy

dθ
= 0.422784

d2Rx

dθ2
= 0.956681

d2Ry

dθ2
= 0.526062

The unit vector for the modified involute is:

Nx(θ) = −0.863606
Ny(θ) = 0.504166

The curvature of this modified involute is:

Kp = 2.340647in−1
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For the gear:

Base radius of the gear is:

rbg = 1.8793in

Involute roll angle at 0.5s is:

θ = 16.3539o = 0.2854rad

The curvature of this unmodified involute is:

Kg =
1

rbgθ
= 1.864162in−1

Thus, the relative radius of curvature is:

ρ =
1

(Kp + Kg)
= 0.237823in
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Calculating the Contact load

The user can find the contact load on individual teeth using the TOOTHLOAD or the TOOTHLD-
HIST command in the postprocessing menu. Table 2.22 shows the TOOTHLOAD menu inputs
used to obtain the contact load value at t = 0.5s. Figure 2.18 shows the tooth load histogram
at t = 0.5s. Table 2.23 shows the TOOTHLDHIST menu inputs used to obtain this plot. The
value of contact load at the pitch point from the tooth load plot is 6.7563× 102lbf .

Contact load per unit length =
Contact load
Facewidth

= 6.7563× 102lbf/in (2.7)

Table 2.22: Toothload menu to obtain the contact load at t=0.5s

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
BEGINSTEP 13
ENDSTEP 13

Table 2.23: Toothldhist menu to obtain the tooth load histogram at t=0.5s

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TIMESTEP 13
HISTCOLOR BLACK
AUTOSCALE TRUE
OUTPUTTOFILE FALSE
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Figure 2.18: Toothload histogram at t=0.5s
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Calculating the Contact Pressure

For the present case, since we have not applied any tooth modifications the contact between the
pinion and gear tooth can be assumed to be a two dimensional contact of cylindrical bodies.
Using the Hertz theory of elastic contact for such cases the maximum pressure, po is given by,

po =
PEeq

πρ
(2.8)

where,

po = Maximum Contact pressure

P = Contact load per unit length = 6.7563× 102lbf/in

ρ = Relative radius of curvature = 0.237823in

νp = Pinion Poissons ratio = 0.3
νg = Gear Poissons ratio = 0.3

Ep = Pinion Young’s modulus = 3× 107psi

Eg = Gear Young’s modulus = 3× 107psi

1
Eeq

=
1− ν2

p

Ep
+

1− ν2
g

Eg

Eeq from above = 1.648351× 107psi

Substituting the above values the theoretical contact pressure is 1.22089× 105psi, compared
with 1.24148× 105psi predicted by Calyx.

Table 2.24 shows the comparison of contact pressure values for pinion tooth no.1 obtained
from Calyx and the theoretical calculations at various roll angles. The spreadsheet used to
carry out the calculations shown in Table 2.24 is in file quadtipmodification.xls in the
CONTACTPRESSURE directory. A graph comparing Calyx’s and Hertz’s predictions is shown in
Figure 2.19. As can be seen from the plot there is no spike in the contact pressure value when
the start of modified involute for the gear or pinion comes in contact. This is due to the gradual
change in the curvature of the tooth when you apply quadratic tip modification. This example
shows that the predictions made by Calyx are very close to Hertz pedictions.
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modification at the teeth
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Table 2.24: Contact pressure values for quadratic tip modified tooth obtained from calyx and
theoretical calculations for various pinion roll angles

Time(s) Pinion
involute
roll
angle
(deg)

Gear
involute
roll
angle
(deg)

Pinion
radius
of curv
(in)

Gear
radius
of curv
(in)

Effective
radius
of curv
(in)

Contact
load
(lbf/in)

Hertz con-
tact pres-
sure (psi)

Calyx
contact
pressure
(psi)

-0.7 8.2539 27.1539 0.1353 0.8572 0.1169 64.4317 5.3774 ×104 5.5576 ×104

-0.6 10.0539 26.2539 0.1648 0.8266 0.1374 193.627 8.5966 ×104 8.6454 ×104

-0.5 11.8539 25.3539 0.1944 0.7960 0.1562 390.95 1.1457 ×105 1.1548 ×105

-0.4 13.6539 24.4539 0.2239 0.7654 0.1732 649.995 1.4030 ×105 1.4206 ×105

-0.3 15.4539 23.5539 0.2534 0.7347 0.1884 960.308 1.6351 ×105 1.6613 ×105

-0.2 17.2539 22.6539 0.2829 0.7039 0.2018 1064.18 1.6632 ×105 1.6920 ×105

-0.1 19.0539 21.7539 0.3124 0.6730 0.2134 1064.18 1.6175 ×105 1.6456 ×105

0.0 20.8539 20.8539 0.3420 0.6420 0.2231 1064.18 1.5818 ×105 1.6111 ×105

0.1 22.6539 19.9539 0.3715 0.6109 0.2310 1064.18 1.5546 ×105 1.5873 ×105

0.2 24.4539 19.0539 0.4010 0.6249 0.2442 1064.18 1.5118 ×105 1.5453 ×105

0.3 26.2539 18.1539 0.4305 0.5954 0.2498 999.747 1.4488 ×105 1.4789 ×105

0.4 28.0539 17.2539 0.3948 0.5659 0.2325 871.498 1.4021 ×105 1.4311 ×105

0.5 29.8539 16.3539 0.4272 0.5364 0.2378 675.636 1.2208 ×105 1.2414 ×105

0.6 31.6539 15.4539 0.4593 0.5069 0.2409 416.723 9.5256 ×104 9.6432 ×104

0.7 33.4539 14.5539 0.4911 0.4773 0.2420 104.778 4.7655 ×104 4.7873 ×104
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2.4 Contact pressure for spur gear model with lead crown
tooth modification

When the spur gear teeth are crowned, Hertz’s equations for cylindrical contact can no longer
be used. Hertz’s relationships for elliptical contact need to be used.

2.4.1 The example file

Load the file toothcrowning.ses from the CONTACTPRESSURE directory.
To study the effect of crowning on Contact pressure, a lead crown is applied on pinion and

gear tooth as shown in Figures 2.20 and 2.21. Tables 2.25 and 2.26 show the modification menus
for pinion and gear teeth respectively. All the other menus including the setup menu are similar
to the case with no tooth modifications.

Figure 2.20: Crowning applied to the pinion tooth

Table 2.25: Modification menu inputs used for the pinion tooth

Item Description
LEADCROWN TRUE
MAGLEADCROWN 0.0003
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Figure 2.21: Crowning applied to the gear tooth

Table 2.26: Modification menu inputs used for the gear tooth

Item Description
LEADCROWN TRUE
MAGLEADCROWN 0.0003
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2.4.2 Obtaining the contact pressure from the postprocessing menu

After the analysis is complete, a post processing data file is created in the working directory.
CONTACT command in the postprocessing menu is used to obtain the contact pressure at a
particular instant. Figure 2.22 shows the plot of contact pressure against time for pinion tooth
no.1. At t = 0, the pinion tooth no.1 is in contact with the gear tooth no.1 at the pitch point.
The contact pressure value from the postprocessing menu at t = 0 is 2.0148× 105psi. The exact
value of the contact pressure at t = 0 can be obtained by plotting the GRIDPRHIST plot as
shown in Figure 2.23.
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Figure 2.22: Plot of contact pressure against time for pinion tooth no.1
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Contact Pressure at Time = 0.000000E+000, Range=[0.000000E+000,2.014838E+005]. Each Div.=1.000000E+005

Tooth 1

Figure 2.23: Grid pressure histogram for crowned pinion tooth no.1 at t=0 (Contact Pres-
sure at Time= 0.00 is 2.014838E+005. Range of contact pressure is from 0.000000E+000 to
2.014838E+005 and each division corresponds to 1.000000E+005
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Figure 2.24: Figure showing the crowning curvature

2.4.3 Contact pressure from theoretical calculations

Relative Radius of curvature

From Figure 2.24 the crowning at an arbitrary location along the face width is given by:

δ = R−R cos θ

where θ is the angle subtended at the center of curvature of the crown. Expanding θ in a Taylor
series,

cos θ = 1− θ2

2
+

θ4

4
− θ6

6
....

For small curvature (large R), θ is very small. Neglecting higher terms we get,

δ = R−R(1− θ2

2
) = R

θ2

2

From Figure 2.24, at the edge of the tooth,

θ = sin−1(
w

2R
)

θ ≈ w

2R
for large R
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Therefore,

δ =
w2

8R

The Radius of curvature, is therefore,

R =
w2

8δ
(2.9)

For contact at crowned teeth we assume that the shape of contact is elliptical having semi-axes
a and b. To calculate the pressure for such bodies we use the Hertz theory of elastic contact [21]
between two general bodies.

If R1 & R′1 denote the principal radii of curvature at the point of contact of one of the bodies,
and R2 & R′2 those of the other, and ψ is the angle between the normal planes containing the
curvatures 1/R1 and 1/R2, the constants A and B are determined from the equations:

A + B =
1
2
(

1
R1

+
1

R′1
+

1
R2

+
1

R′2
) (2.10)

B −A =
1
2
[(

1
R1

− 1
R′1

)2 + (
1

R2
− 1

R′2
)2

+ 2(
1

R1
− 1

R′1
)(

1
R2

− 1
R′2

) cos ψ]1/2 (2.11)

For our case we consider R as the radius of curvature in the profile direction and R′ as the radius
of curvature in the facewidth direction. For the case where in the contact is at the pitch point,
the radius of curvature in the profile direction for the pinion, R1 = 0.3419in and that for the
gear, R2 = 0.6839in. Note that we have already calculated these values in the case where we do
not have any tooth modifications. From equation 1.16, the radius of curvature in the facewidth
direction for the pinion, R′1 = 416.67in and that for the gear, R′2 = 416.67in. Also the angle, ψ
between the normal planes containing the curvatures is 0.0.

Substituting the values of R1, R′1, R2, R′2 and ψ in equations for (A + B) and (B - A), we get
A + B = 2.1959 and B −A = 2.191.

cosα =
B −A

A + B
= 0.9977

α = 3.8283o (2.12)

Using the table given for m and n values in Appedix A, by linear interpolation, we get m =
13.8577 and n = 0.2150.
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The magnitudes of the semi-axes for the ellipsoid can be calculated using the following:

a = m(
3π

4
P (kp + kg)
(A + B)

)1/3 (2.13)

b = n(
3π

4
P (kp + kg)
(A + B)

)1/3 (2.14)

where,

a, b = semiaxes of the contact region
m,n = constants

P = Contact load per unit length
νp = Pinion Poissons ratio = 0.3
νg = Gear Poissons ratio = 0.3

Ep = Pinion Young’s modulus = 3× 107

Eg = Gear Young’s modulus = 3× 107

kp =
1− ν2

p

πEp

kg =
1− ν2

g

πEg
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Table 2.27: Toothload menu inputs used to obtain the contact load at t=0

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
BEGINSTEP 8
ENDSTEP 8

Table 2.28: Toothldhist menu inputs used to obtain the tooth load histogram at t=0

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TIMESTEP 8
HISTCOLOR BLACK
AUTOSCALE TRUE
OUTPUTTOFILE FALSE

Calculating the Contact load

The user can find the contact load value using the TOOTHLOAD or the TOOTHLDHIST
command in the postprocessing menu. Table 2.27 shows the TOOTHLOAD menu to obtain the
contact load value at t = 0. Figure 2.25 shows the tooth load histogram at t = 0. Table 2.28
shows the TOOTHLDHIST menu to obtain this plot. The value of contact load at the pitch
point from the tooth load plot is 1.0641× 103lbf .
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Figure 2.25: Toothload histogram at the t=0
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Calculating the Contact Pressure

Using the Hertz theory of elastic contact for elliptical contact the maximum pressure, po is given
by,

po =
3
2

P

πab
(2.15)

Calculating a & b and Substituting the value of P from above the theoretical contact pressure
is 2.161× 105psi, compared to 2.014× 105psi from the program .

2.5 Conclusion

The difference between the theoretical contact pressure values and those obtained from Calyx
is due to the assumption of a very large tooth thickness in the derivations for the Radius of
curvatures given by the Hertz theory related to contacting bodies. In actual cases the gear bodies
have finite thicknesses. Since Calyx takes in to consideration all the geometrical parameters we
feel that it gives a more accurate representation of the contact pressure values. When you
reduce the value of tooth thickness you can see the change in the value of the contact pressure.
For tooth thickness=0.15in, the contact pressure value obtained from calyx is 2.003221×105psi.
Further reducing the thickness to 0.145in reduces the contact pressure value to 1.993894×105psi.
Furthermore, there is error in the analytical predictions because of the error in the values of m
and n obtained from linear interpolation.
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Chapter 3

Sub-surface stresses in a spur
gear model using Calyx

A verification study comparing the sub-surface stresses predicted by Calyx with those predicted
by the theory of elasticity is presented here.

3.1 The spur gear model with no tooth modification

This example uses an unmodified spur gear .

3.1.1 The example file

After hitting the CONNECT button, choose the CONTACTPRESSURE directory under the SAMPLES
directory. This in turn is located in the Working directory(WORKDIR) selected by the User at the
installation time. Load the file subsurface.ses from the CONTACTPRESSURE directory.

This session file contains a model identical to the spur gear set described in the previous
chapter. The only difference is that only one time step will be analyzed. We have chosen to
analyze the gear pair at the pitch point.

Tables 3.1 shows the analysis setup.

3.1.2 Obtaining the sub-surface stress from the postprocessing menu

During the analysis, a post processing data file is created in the working directory. The SUB-
SURFACE command in the postprocessing menu is used to obtain the sub-surface stress at a
particular instant. At t = 0, the pinion tooth no.1 is in contact with the gear tooth no.1 at
the pitch point. Figure 3.1 shows the sub-surface Von-Mises stress as a function of depth. Ta-
ble 3.2 shows the inputs used to obtain this plot. The SUBSURFACE command selects the
grid cell with the maximum contact pressure as the location for sub-surface stress computation.
We restricted ourselves to the middle of the face width by setting TFACEBEGIN = -0.01 and
TFACEEND = +0.01. The depth was varied from 0.00001 inch to 0.02 inch. A total of 101
points were sampled. The predicted maximum Von Mises stress is 41,529 psi at a depth of 0.003
inches, and the maximum shear stress is 47,551 psi at a depth of 0.0034 inches. The maximum
shear stress predicted by the theory of elasticity is 47,928 psi at the same depth. Figure 3.2
shows the maximum shear as a function of depth.

Figures 3.3 through 3.6 show the comparison between Calyx and theory (K. L. Johnson [20]) of
the normal stresses and maximum shear stress as a function of depth. An excel file subsurface.xls
containing the theory of elasticity calculations can be found in the CONTACTPRESSURE directory.
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Table 3.1: Setup menu inputs

Item Description
SEPTOL 0.05
NPROFDIVS 8
NFACEDIVS 25
DSPROF 0.0005
ZEROINITIAL TRUE
INITIALTIME -0.1
NRANGES 1
RANGE 1
SOLMETHOD STATIC
NTIMESTEPS 1
DELTATIME 0.1
STARTSPEEDFACTOR 1.0
STARTTORQUEFACTOR 1.0
ENDTORQUEFACTOR 1.0
SAVEPERIODICALLY FALSE
OUTPUTRESTART FALSE
POSTPROCWRITE TRUE
POSTFILENAME postproc.dat
NSTEPSWRITE 1

Table 3.2: Sub-surface menu inputs

Item Description
SURFACEPAIR PINION SURFACE1 GEAR SURFACE1
MEMBER PINION
TOOTHBEGIN 1
TOOTHEND 1
TIMESTEP 1
SPROFBEGIN 0.0
SPROFEND 48.0
TFACEBEGIN -0.01
TFACEEND 0.01
DEPTHBEGIN 0.00001
DEPTHEND 0.02
NUMDEPTH 101
COMPONENT VONMISES
OUTPUTTOFILE FALSE
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Figure 3.1: Graph of sub-surface Von Mises stress as a function of depth at pinion tooth no.1.
The contact is at the pitch point.
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Figure 3.2: Graph of sub-surface max. shear stress as a function of depth at pinion tooth
no.1.The contact is at the pitch point.
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of elasticity (K. L. Johnson [20]).

Sigma yy

-120000

-100000

-80000

-60000

-40000

-20000

0

0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02 2.50E-02

Calyx syy

Hertz syy

Figure 3.4: Comparison of sub-surface σyy predicted by Calyx with that computed by the theory
of elasticity (K. L. Johnson [20]).



62 Sub-surface stresses in a spur gear model using Calyx

Sigma zz

-200000

-180000

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02 2.50E-02

Calyx szz

Hertz szz

Figure 3.5: Comparison of sub-surface σzz predicted by Calyx with that computed by the theory
of elasticity (K. L. Johnson [20]).

Tau_max=(sxx-szz)/2

0

10000

20000

30000

40000

50000

60000

0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02 2.50E-02

Calyx MaxShear=(sxx-szz)/2

Hertz Maxshear

Figure 3.6: Comparison of sub-surface τmax = (σxx − σzz)/2 predicted by Calyx with that
computed by the theory of elasticity (K. L. Johnson [20]).



Chapter 4

Calculation of transmission error
for a spur and helical gear model
using Calyx

4.1 Introduction

Gear noise is mainly characterized by components at the gear mesh frequency and its multiples.
The gear mesh frequency is the inverse of the time period between consecutive tooth contact and
may be computed multiplying the number of teeth on the gear by its rotational velocity. Other
frequency components can also occur, but they are usually secondary with respect to the mesh
frequency. The most important exciters of the gear forces, which are periodic at the gear mesh
frequency are:

• Transmission error

• Mesh stiffness changes

If gears were perfect involutes, absolutely rigid and correctly spaced, there would be no
vibration generated when meshing. In practice, for a variety of reasons, this does not occur
and the idea of transmission error came into existence. The transmission error is defined as the
difference between the current position of the output gear and the position it would occupy if
it were perfectly conjugated with the input gear. For unloaded gears, transmission error is the
result of surface modifications and manufacturing inaccuracies such as profile errors, spacing
errors and runout. For loaded gears, the teeth deflection due to the mesh stiffness variation,
superimposed to the unloaded gear errors, is the cause of the transmission error.

A vibration transmission path starts from a combination of manufacturing errors and tooth
and gear deflections to generate the transmission error. The transmission error is then the source
of vibration and it drives the internal dynamics of the gears to give vibration forces through the
bearing supports. In turn, these bearing forces drive the external gear case vibration or, via any
isolation mounts, drive the external structure to find the sound radiating panel which transmits
noise. In a vehicle, after the vibration has travelled from the gear box through the engine main
casting to the support mounts and hence to the structure, it may travel several meters in the
body before exciting a panel to emit sound that annoys the occupants.
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Table 4.1: Data for low contact ratio spur gear

Item Pinion Gear
NUMBER OF TEETH 20 119
TRANSVERSE DIAM. PITCH (in−1) 7.8 7.8
TRANSVERSE PRESSURE ANGLE (deg) 20.0 20.0
CENTER DISTANCE (in) 8.9102 8.9102
OPERATING PITCH DIAM. (in) 2.56409 15.2563
OUTSIDE PITCH DIAM. (in) 2.82050 15.4927
ROOT DIAM. (in) 2.19486 14.8671
INNER DIAM. (in) 1.20 13.90
FACE WIDTH (in) 1.0 1.0
STANDARD PITCH RADIUS (in) 0.201382 0.19410
OPERATING PITCH RADIUS (in) 0.201382 0.19410
CONTACT RATIO 1.6443 1.6443
TORQUE (lbf − in) 1000 5950

4.2 Measuring the transmission error using calyx

A. Singh [22] in his Masters thesis made a comparison between the transmission error values
predicted by the Contact Analysis Program Package called CAPP and the Load Distribution
Program called LDP developed at The Ohio State University. In this chapter we have compared
the transmission error values obtained from Calyx with these results.

4.2.1 Comparison of transmission error values obtained from Calyx
and LDP for Spur gears

Two sets of spur gears are analysed. The first is a low contact ratio spur gear and is described in
Table 4.1. Load the file tespurlowcr.ses from the TRANSERROR directory in the Working direc-
tory(WORKDIR). Figure 4.1 shows the transmission error curves obtained from LDP and CAPP
for this gear set. Figure 4.2 shows the transmission error plot for the gear set obtained using
Calyx. This plot is obtained using the BODYDEFLECTION command in the postprocessing
menu. The peak to peak transmission error(T.E) which is the difference in the maximum deflec-
tion and the minimum deflection in the Z-direction is 1.50132 × 10−4rads = 180.86µin (Using
a base radius value of 1.204728in). Figure 4.3 shows the same T.E curve in µin. The sign used
for the transmission error is opposite to that used in Figure 4.1. LDP predicts a peak to peak
T.E value of 190µin. CAPP predicts a peak to peak T.E of 150µin.
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Figure 4.1: Comparison of transmission error predicted by LDP and CAPP for a low contact
ratio spur gear model under a load of 1000lbf − in. Peak to Peak transmission error obtained
from LDP is about 190µin. CAPP predicts a peak to peak T.E of 150µin. (From “Analysis
of spur and helical gears using a combination of finite element and surface integral techniques”,
M.S. Thesis by Avinashchandra Singh at The Ohio State University).
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Figure 4.2: Transmission error predicted by Calyx for a low contact ratio spur gear model under
a load of 1000lbf−in. Peak to Peak transmission error predicted by Calyx is 1.50132×10−4rads.
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Figure 4.3: Transmission error predicted by Calyx for a low contact ratio spur gear model under
a load of 1000lbf − in. Peak to Peak transmission error obtained from Calyx is about 180µin.



68 Calculation of transmission error for a spur and helical gear model using Calyx

Table 4.2: Data for a high contact ratio spur gear

Item Pinion Gear
NUMBER OF TEETH 27 34
TRANSVERSE DIAM. PITCH (in−1) 10.233 10.233
TRANSVERSE PRESSURE ANGLE (deg) 20.811 20.811
CENTER DISTANCE (in) 2.980 2.980
OPERATING PITCH DIAM. (in) 2.63803 3.32197
OUTSIDE PITCH DIAM. (in) 2.885 3.622
ROOT DIAM. (in) 2.320 3.039
INNER DIAM. (in) 1.5 2.0
FACE WIDTH (in) 1.152 1.152
STANDARD PITCH RADIUS (in) 0.142 0.160
OPERATING PITCH RADIUS (in) 0.142159 0.160203
CONTACT RATIO 2.17 2.17
TORQUE (lbf − in) 900 1133.33

The data for a high contact ratio spur gear is described in Table 4.2. Load the file tespurhighcr.ses
from the TRANSERROR directory in the Working directory(WORKDIR). Figure 4.4 shows the trans-
mission error curves obtained from LDP and CAPP for this gear set. Figure 4.5 shows the T.E
curve in µin obtained from Calyx. The peak to peak T.E predicted by CAPP is approximately
35µin. LDP predicts approximately 50µin. Calyx predicts a peak to peak T.E of 37.4µin with
a base radius of 1.232959in.
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Figure 4.4: Comparison of transmission error predicted by LDP and CAPP for a high contact
ratio spur gear model under a load of 900lbf − in. Peak to Peak transmission error obtained
from LDP is about 50µin. (From “Analysis of spur and helical gears using a combination of
finite element and surface integral techniques”, M.S. Thesis by Avinashchandra Singh at The
Ohio State University).
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Figure 4.5: Transmission error predicted by Calyx for a low contact ratio spur gear model under
a load of 900lbf − in. Peak to Peak transmission error obtained from Calyx is 37.411µin.
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Table 4.3: Data for a helical gear set

Item Pinion Gear
NUMBER OF TEETH 13 127
NORMAL DIAM. PITCH (in−1) 6.173435 6.173435
TRANSVERSE DIAM. PITCH (in−1) 5.29167 5.29167
TRANSVERSE PRESSURE ANGLE (deg) 23.00704 23.00704
NORMAL PRESSURE ANGLE (deg) 20.0 20.0
HELIX ANGLE (deg) 31.00 31.00
CENTER DISTANCE (in) 13.22835 13.22835
PITCH DIAM. (in) 2.4567 24.00
OUTSIDE DIAM. (in) 2.9637 24.2278
ROOT DIAM. (in) 2.1202 23.3842
INNER DIAM. (in) 0.90 22.00
FACE WIDTH (in) 2.00 2.00
TRANSVERSE CIRCULAR THICKNESS (in) 0.341357 0.234960
FACE CONTACT RATIO 2.0242 2.0242
TRANSVERSE CONTACT RATIO 1.3944 1.3944
TORQUE (lbf − in) 8040.0 78544.6

4.2.2 Comparison of transmission error values obtained from Calyx
and LDP for Helical gears

The data for a helical gear set is described in Table 4.3. Load the file tehelical.ses from
the TRANSERROR directory in the Working directory(WORKDIR). Figure 4.6 shows the transmission
error curves obtained from LDP and CAPP for this gear set. The T.E curve obtained from
CAPP in Figure 4.6 seems to be wrong. Figure 4.7 shows the T.E curve obtained from a more
recent run made with CAPP. Note that the sign convention used for this model is opposite to
that shown in Figure 4.6. Figure 4.8 shows the T.E curve in µin obtained from Calyx. The peak
to peak T.E predicted by CAPP is 23.40µin. LDP predicts aproximately 40µin. Calyx predicts
a peak to peak T.E of 27.745µin with a base radius of 1.130643in.

4.3 Conclusion

The deflection curve obtained from Calyx closely matches with that obtained from LDP and
CAPP. LDP does not predict the premature contact of the gear teeth due to deflection under
load because of the assumption of contact along the line of action. The contact ratio obtained
from LDP is the theoretical contact ratio. So, the transmission error obtained from LDP has a
sudden jump when the gears go from one pair of teeth to two pairs of teeth in contact. But the
T.E curve obtained from CAPP and Calyx has a smooth transition from one pair of teeth to two
pairs of teeth in contact. Thus Calyx gives a reasonably correct representation of transmission
error for both spur and helical gears.
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Figure 4.6: Comparison of transmission error predicted by LDP and CAPP for a helical gear
model under a load of 8040.0lbf−in. Peak to Peak transmission error obtained from LDP is about
40µin. (From “Analysis of spur and helical gears using a combination of finite element and surface
integral techniques”, M.S. Thesis by Avinashchandra Singh at The Ohio State University).
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Figure 4.7: Transmission error predicted by CAPP for a helical gear model under a load of
8040lbf − in. Peak to Peak transmission error obtained from CAPP is 23.40µin.
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Figure 4.8: Transmission error predicted by Calyx for a low contact ratio spur gear model under
a load of 8040lbf − in. Peak to Peak transmission error obtained from Calyx is 27.75µin.



Chapter 5

Internal helical gear pair example

The internal helical gear set example will help the user model an internal helical gear pair using
the Helical3D program. Figure 5.1 shows the finite element model of a internal helical gear set.

5.1 The example file

Load the file internal.ses from the EXAMPLES directory under the SAMPLES directory.
The example model does not have any tooth modifications on the pinion or the gear.
Tables 5.2 through 5.11 show the data to be entered in the EDIT menu for running the

internal gear model. No assembly errors are considered for the pinion and the ring/gear. Also
there are no bearings in the model.
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Figure 5.1: Finite element model of an internal helical gear set

Table 5.1: Units used for the internal helical gear set

Physical quantity English
LENGTH in
TIME secs
ANGLE deg or rad
MASS lbf.s2/in
MOMENT OF INERTIA lbf.s2.in
STIFFNESS lbf/in
SPEED RPM or rad/sec
TORQUE lbf.in
YOUNGS MODULUS lbf/in2

DENSITY lbf.s2/in4

LOAD lbf
STRESSES psi



5.1 The example file 77

Table 5.2: System configuration parameters

Item Description
MESHTYPE CALYX3D
CENTERDIST 3.02
OFFSET 0.00
ROTX 0.00
ROTY 0.00
INPUT PINION
TORQUEINPUT 1000.00
RPMINPUT -3.00
MU 0.00
MAGRUNOUTGEAR 0.00
ANGRUNOUTGEAR 0.00
MAGRUNOUTPINION 0.00
ANGRUNOUTPINION 0.00
BACKSIDECONTACT FALSE

Table 5.3: Pinion data

Item Description
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00

Table 5.4: Pinion tooth data

Item Description
NTEETH 20
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.15708
FACEWIDTH 1
HAND LEFT
HELIXANGLE 20.00
RACKTIPRAD 0.02
OUTERDIA 2.18
ROOTDIA 1.70
RIMDIA 1.40
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE pinion.msh
TPLFILE medium.tpl
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Table 5.5: Pinion rim data

Item Description
RIMTYPE SIMPLE
RIMDIA 1.40
INNERDIA 1.20
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 8
ELEMTYPE LINEAR
NDIVSRADIAL 2
NTHETA 32
NDIVSWIDTH 4

Table 5.6: Pinion bearing menu

Item Description
RIGIDRACE FALSE
CIRCORDER 8
AXIALORDER 2
BEARING FALSE

Table 5.7: Gear data

Item Description
TYPE INTERNAL
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00
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Table 5.8: Gear tooth data

Item Description
NTEETH 80
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.14
FACEWIDTH 1
HAND LEFT
HELIXANGLE 20.00
RACKTIPRAD 0.04
OUTERDIA 7.80
ROOTDIA 8.30
RIMDIA 8.65
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE gear.msh
TPLFILE medium.tpl

Table 5.9: Gear rim data

Item Description
RIMTYPE SIMPLE
RIMDIA 8.65
OUTERDIA 9.00
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 16
ELEMTYPE QUADRATIC
NDIVSRADIAL 4
NTHETA 64
NDIVSWIDTH 4

Table 5.10: Gear bearing menu

Item Description
RIGIDRACE FALSE
CIRCORDER 16
AXIALORDER 2
BEARING FALSE
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Table 5.11: Setup data

Item Description
SEPTOL 0.01
NPROFDIVS 8
NFACEDIVS 12
DSPROF 0.001
ZEROINITIAL TRUE
INITIALTIME -0.5
NRANGES 1
RANGE 1
SOLMETHOD STATIC
NTIMESTEPS 11
DELTATIME 0.1
STARTSPEEDFACTOR 1.0
STARTTORQUEFACTOR 1.0
ENDTORQUEFACTOR 1.0
SAVEPERIODICALLY FALSE
OUTPUTRESTART FALSE
POSTPROCWRITE TRUE
POSTFILENAME postproc.dat
NSTEPSWRITE 1
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Figure 5.2: Maximum principal normal stress contour for an internal helical gear set

5.2 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 5.2
shows the maximum principal normal stress contour for the internal helical gear pair.
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Chapter 6

Internal helical gear with webbed
rim

Figure 6.1 shows the finite element model of a internal helical gear set with webbed rim .

6.1 The example file

Load the file internalwebbed.ses from the EXAMPLES directory.
The data is similar to the previous example except for the rim menu. The example model

does not have any tooth modifications on the pinion or the gear.

6.2 Modeling the rim

The purpose of including a rim model is to apply the correct boundary conditions to the tooth
model. This is important because the boundary conditions can have a significant effect on the
load and stress distribution.

The webbed rim is composed of an arbitrary number of ‘segments’(in this case 4). The
position of the first segment cannot be changed. As discussed in the Users manual each of the
remaining segments can be placed in four different positions(AHEAD, BEHIND, INSIDE and
OUTSIDE) relative to the previous segment.

Table 6.1 shows the data common to all the segments for the webbed rim for the internal
gear. Table 6.2 show the radial and axial coordinates for each segment and their respective
positions relative to the previous segment.
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Figure 6.1: Finite element model of an internal helical gear set with a webbed rim

Table 6.1: Webbed rim data common to all segments

Item Description
RIMTYPE WEBBED
RIMDIA 8.65
NTHETA 64
ELEMTYPE QUADRATIC
AXIALORDER 2
CIRCORDER 16
NSEGS 4
NETA 2
NZETA 2

Table 6.2: Data for each segment of the webbed rim

ISEG POSITION RA RB ZA ZB
1 OUTSIDE 4.575 4.575 -0.50 0.50
2 BEHIND 4.325 4.575 -0.75 -0.75
3 BEHIND 4.325 4.575 -1.25 -1.25
4 INSIDE 1.00 1.00 -1.25 -0.75
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Figure 6.2: Maximum principal normal stress contour for an internal helical gear set with a
webbed rim

6.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 6.2
shows the maximum principal normal stress contour for the internal helical gear pair.
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Chapter 7

Modeling splines using the
Helical 3D program

Using the Helical3D program external splines or internal splines can be used with external or
internal gears. Thus it is possible to model four different combinations of gears and splines.

7.1 Internal splines on external gear

The following example has internal splines on an external gear(Pinion). Figure 7.1 shows the
model of a internal helical gear set with splines on the inner diameter of the Pinion .

7.1.1 The example file

Load the file extgearintsplines.ses from the EXAMPLES directory.
The data is similar to the Internal helical gear pair example except for the pinion rim menu.

The example model does not have any tooth modifications on the pinion or the gear.

7.1.2 Modeling the splines

The INTERNALSPLINED option in the Rim menu refers to the internal splines. The pinion
rim data to model the internal splines on the pinion is shown in Table 7.1. All the splines are
evenly spaced along the inner diameter of the pinion.

7.1.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 7.2
shows the maximum principal normal stress contour for the internal helical gear pair. Figure 7.3
shows the load distribution on the pinion and the splines.
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Figure 7.1: An internal helical gear set with internal splines on the external gear

Figure 7.2: Maximum principal normal stress contour for an internal helical gear set with internal
splines on the pinion
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Table 7.1: Pinion rim menu to model the internal splines

Item Description
RIMTYPE INTERNALSPLINED
TYPE DOUBLESIDED
BACKLASH 0.00
RIMDIA 1.40
INNERDIA 1.20
RIMWIDTH 1.00
RIMOFFSET 0.00
AXIALORDER 2
CIRCORDER 8
ELEMTYPE LINEAR
NDIVSRADIAL 2
NTHETA 32
NDIVSWIDTH 4
NSPLINES 8
PRESSANGLE 10
SPLINEWIDTH 0.15
SPLINEHEIGHT 0.10
SPLINELENGTH 0.35
SPLINEOFFSET 0.15
EVEN TRUE
ANGPOSNFIRSTSPLIN 0.00
SPLINEELEMTYPE QUADRATIC
NDIVSSPLINEWIDTH 2
NDIVSSPLINEHEIGHT 2
NDIVSSPLINELENGTH 2
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Figure 7.3: Load distribution on the pinion and the splines
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Figure 7.4: An internal helical gear set with external splines on the external gear

7.2 External splines on external gear

The following example has external splines on an external gear(Pinion). Figure 7.4 shows the
model of a internal helical gear set with external splines on the Pinion .

7.2.1 The example file

Load the file extgearextsplines.ses from the EXAMPLES directory.
The data is similar to the Internal helical gear pair example except for the pinion rim menu.

The example model does not have any tooth modifications on the pinion or the gear.

7.2.2 Modeling the splines

The EXTERNALSPLINED option in the Rim menu refers to the external splines. The pinion
rim data to model the external splines on the pinion is shown in Table 7.2. All the splines are
evenly spaced along the rim diameter of the pinion.
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Table 7.2: Pinion rim menu to model the external splines

Item Description
RIMTYPE EXTERNALSPLINED
TYPE DOUBLESIDED
BACKLASH 0.00
RIMDIA 1.40
INNERDIA 1.20
RIMWIDTH 1.50
RIMOFFSET 0.25
AXIALORDER 2
CIRCORDER 8
ELEMTYPE LINEAR
NDIVSRADIAL 2
NTHETA 32
NDIVSWIDTH 4
NSPLINES 8
PRESSANGLE 10
SPLINEWIDTH 0.15
SPLINEHEIGHT 0.10
SPLINELENGTH 0.35
SPLINEOFFSET 0.80
EVEN TRUE
ANGPOSNFIRSTSPLIN 0.00
SPLINEELEMTYPE QUADRATIC
NDIVSSPLINEWIDTH 2
NDIVSSPLINEHEIGHT 2
NDIVSSPLINELENGTH 2
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Figure 7.5: Maximum principal normal stress contour for an internal helical gear set with external
splines on the pinion

7.2.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 7.5
shows the maximum principal normal stress contour for the internal helical gear pair. Figure 7.6
shows the load distribution on the pinion and the splines.



94 Modeling splines using the Helical 3D program

Figure 7.6: Load distribution on the pinion and the splines
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Figure 7.7: An internal helical gear set with external splines on the internal gear

7.3 External splines on internal gear

The following example has external splines on an internal gear. Figure 7.7 shows the model of
an internal helical gear set with external splines on the Ring(internal) gear.

7.3.1 The example file

Load the file intgearextsplines.ses from the EXAMPLES directory.
The data is similar to the Internal helical gear pair example except for the pinion rim menu.

The example model does not have any tooth modifications on the pinion or the gear.

7.3.2 Modeling the splines

The EXTERNALSPLINED option in the Rim menu refers to the external splines. The Gear
rim data to model the external splines on the internal gear is shown in Table 7.3. All the splines
are evenly spaced along the outer diameter of the gear.
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Table 7.3: Gear rim menu to model the external splines

Item Description
RIMTYPE EXTERNALSPLINED
TYPE DOUBLESIDED
BACKLASH 0.00
RIMDIA 8.65
OUTERDIA 9.00
RIMWIDTH 1.00
RIMOFFSET 0.00
AXIALORDER 2
CIRCORDER 16
ELEMTYPE QUADRATIC
NDIVSRADIAL 4
NTHETA 64
NDIVSWIDTH 4
NSPLINES 20
PRESSANGLE 25
SPLINEWIDTH 0.20
SPLINEHEIGHT 0.10
SPLINELENGTH 0.30
SPLINEOFFSET -0.25
EVEN TRUE
ANGPOSNFIRSTSPLIN 0.00
SPLINEELEMTYPE QUADRATIC
NDIVSSPLINEWIDTH 2
NDIVSSPLINEHEIGHT 2
NDIVSSPLINELENGTH 2
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Figure 7.8: Maximum principal normal stress contour for an internal helical gear set with external
splines on the internal gear

7.3.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 7.8
shows the maximum principal normal stress contour for the internal helical gear pair. Figure 7.9
shows the contact pressure distribution on the gear and the splines.



98 Modeling splines using the Helical 3D program

Figure 7.9: Contact pressure distribution for an internal helical gear set with external splines on
the internal gear
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Figure 7.10: An internal helical gear set with internal splines on the internal gear

7.4 Internal splines on internal gear

The following example has internal splines on an internal gear. Figure 7.10 shows the model of
an internal helical gear set with internal splines on the Ring(internal) gear.

7.4.1 The example file

Load the file intgearintsplines.ses from the EXAMPLES directory.
The data is similar to the Internal helical gear pair example except for the gear rim menu.

The example model does not have any tooth modifications on the pinion or the gear.

7.4.2 Modeling the splines

The INTERNALSPLINED option in the Rim menu refers to the internal splines. The Gear rim
data to model the internal splines on the internal gear is shown in Table 7.4. All the splines are
evenly spaced along the rim diameter of the gear.
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Table 7.4: Gear rim menu to model the internal splines

Item Description
RIMTYPE INTERNALSPLINED
TYPE DOUBLESIDED
BACKLASH 0.00
RIMDIA 8.65
OUTERDIA 9.00
RIMWIDTH 1.50
RIMOFFSET 0.25
AXIALORDER 2
CIRCORDER 16
ELEMTYPE QUADRATIC
NDIVSRADIAL 4
NTHETA 64
NDIVSWIDTH 4
NSPLINES 20
PRESSANGLE 25
SPLINEWIDTH 0.20
SPLINEHEIGHT 0.10
SPLINELENGTH 0.30
SPLINEOFFSET 0.85
EVEN TRUE
ANGPOSNFIRSTSPLIN 0.00
SPLINEELEMTYPE QUADRATIC
NDIVSSPLINEWIDTH 2
NDIVSSPLINEHEIGHT 2
NDIVSSPLINELENGTH 2
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Figure 7.11: Maximum principal normal stress contour for an internal helical gear set with
internal splines on the internal gear

7.4.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 7.11
shows the maximum principal normal stress contour for the internal helical gear pair. Figure 7.12
shows the contact pressure distribution on the gear and the splines.
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Figure 7.12: Contact pressure distribution for an internal helical gear set with internal splines
on the internal gear
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Example of topographic
modification

Using the Helical3D program topographic modifications can be applied on to the gear tooth.
Following example shows how to model a pinion tooth with topographic modification. Figure 8.1
shows a finite element model of a helical gear set in the preprocessing view.

8.1 The example file

Load the file topomod.ses from the TOPOMODFN directory located in the SAMPLES directory .
The data is similar to the no tooth modification gear pair example except for the pinion tooth

modification menu. The example model does not have any tooth modifications on the gear. We
have specified a helix angle of 20 for both pinion and gear tooth. We run the analysis for one
tooth cycle.

8.2 Applying topographic modifications on the pinion tooth

A surface modification that is an arbitrary function of both the roll angle and zeta can be
specified using the topographic modification option. The TOPOMOD command in the tooth
data menu leads to the topographic modification menu. The modification is specified at an
arbitrary number of ζ and roll angle values. The magnitude is specified for each pair of these
values. Bilinear interpolation is used between them.

The modification data is specified in the TOPOMOD menu using the script file topomod.txt
located in the working directory(WORKDIR). Figure 8.2 shows the rollangles in degrees along
the profile and zeta values along the facewidth at which modification is applied. For the present
example the contact for tooth no.1 of the pinion starts at a roll angle(degrees) of 11.84 near the
root region. We assume that the modification is applied between the roll angles(deg) 11.84 and
14.85 in the root region and between the roll angles 29.40 and 33.67 near the tip region.
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Figure 8.1: An external helical gear set with topographical modifications applied on to the pinion
tooth



8.2 Applying topographic modifications on the pinion tooth 105

Figure 8.2: Roll angle and zeta values for which modification is applied
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The zeta extension for modification is found using the following:

From the Pinion tooth geometry data:

Pitch diam(Dp) = 2in

Helix angle(ψ) = 20o

Facewidth(W ) = 1in

Lead(L) =
πDp

tanψ

= 17.2629in

In the root region :

Distance of modfn along the profile in roll angle(θ) = 14.85− 11.84
= 3.01o

Distance of modification along the profile in inches = rb × θ(rads)
= 0.9395× 0.0525
= 0.049in

Distance of modification along the width in inches =
0.049× L

2π
= 0.135in.

Note that the ZETA along the facewidth goes from -1 to +1.

The corresponding Zeta distance of modification along the facewidth is 0.135 × 2 = 0.27in.

In the tip region :

Distance of modfn along the profile in roll angle(θ) = 33.67− 29.40
= 4.27o

Distance of modification along the profile in inches = rb × θ(rads)
= 0.9395× 0.0745
= 0.07in

Distance of modification along the width in inches =
0.07× L

2π
= 0.192in.

The corresponding Zeta distance of modification along the facewidth is 0.192 × 2 = 0.384in.
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For this example we have considered 6 points along the modified profile and width in both the
root and the tip region as shown in Figure 8.2. In the root region, maximum modification mag-
nitude of 0.0005in is applied at Rollangle(deg) and zeta(in) value of 11.84 and +1 respectively.
In the tip region, maximum modification magnitude of 0.0005in is applied at Rollangle(deg) and
zeta(in) value of 33.67 and −1 respectively. We reduce the modification magnitude in steps of
0.0001in as we go away from the root and the tip regions. The modification at roll angles(deg)
14.85 and 29.30 is 0.00in. Refer to the text file topomod.txt for further details.

8.3 Results

After the analysis is complete a postprocessing file is created in the working directory. Figure 8.3
shows the contact pattern plot for pinion tooth with topographical modification. The relieved
tip region at Zeta = −1 and root region at Zeta = 1 can be clearly seen in this plot. Figure 8.4
shows the contact pattern plot for pinion tooth without any modifications. Figure 8.5 shows the
body deflection plot for pinion tooth with topographical modification. The transmission error
for the gear model with modification is 1.953× 10−5rads = 1.8348× 10−5in. Figure 8.6 shows
the body deflection plot for pinion tooth without any modifications. The transmission error for
the Helical gear set without any modification is 2.508× 10−5rads = 2.356× 10−5in.
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Figure 8.3: Contact pattern for pinion tooth with topographical modifications
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Figure 8.4: Contact pattern for pinion tooth without any modifications
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Chapter 9

Convergence study

The following test cases are meant to study the effect of various parameters such as tip radius,
thickness, nfaceelems and displorder on the maximum principle normal stress for a helical pinion
and also the convergence of the stress values for different types of mesh templates.

9.1 Effect of Tip radius on the max ppl normal stress

9.1.1 The example file

Load the file convergence.ses from the CONVERGENCE directory located in the SAMPLES directory.
Tables 9.1 through 9.10 show the data to be entered in the EDIT menu for running the

analysis. No assembly errors are considered for the pinion and the gear. Also there are no
bearings in the model. In order to study the effect of tip radius on the stress values we run the
analysis for different tip radii for all the mesh templates. We vary the tip radius from 0.01in to
0.045in in steps of 0.005in.
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Table 9.1: System configuration parameters

Item Description
MESHTYPE CALYX3D
CENTERDIST 3.00
OFFSET 0.00
ROTX 0.00
ROTY 0.00
INPUT PINION
TORQUEINPUT 1000.00
RPMINPUT -3.00
MU 0.00
MAGRUNOUTGEAR 0.00
ANGRUNOUTGEAR 0.00
MAGRUNOUTPINION 0.00
ANGRUNOUTPINION 0.00
BACKSIDECONTACT FALSE

Table 9.2: Pinion data

Item Description
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00

Table 9.3: Pinion tooth data

Item Description
NTEETH 20
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.15708
FACEWIDTH 1
HAND LEFT
HELIXANGLE 0.00
RACKTIPRAD 0.02
OUTERDIA 2.18
ROOTDIA 1.76
RIMDIA 1.40
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE pinion.msh
TPLFILE medium.tpl
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Table 9.4: Modification menu for the pinion tooth

Item Description
QUADTIPMOD TRUE
ROLLQUADTIPMOD 27.25
MAGQUADTIPMOD 0.0005
LEADCROWN 0.0005

Table 9.5: Pinion rim data

Item Description
RIMTYPE SIMPLE
RIMDIA 1.40
INNERDIA 1.20
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 8
ELEMTYPE LINEAR
NDIVSRADIAL 2
NTHETA 32
NDIVSWIDTH 4

Table 9.6: Gear data

Item Description
TYPE EXTERNAL
LUMPMASS 0.00
LUMPMOMINERTIA 0.00
LUMPALPHA 0.00
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Table 9.7: Gear tooth data

Item Description
NTEETH 40
NFACEELEMS 4
COORDORDER 10
DISPLORDER 3
PLANE TRANSVERSE
XVERSEDIAMPITCH 10
XVERSEPRESSANGLE 20
XVERSETHICK 0.15708
FACEWIDTH 1
HAND RIGHT
HELIXANGLE 0.00
RACKTIPRAD 0.02
OUTERDIA 4.18
ROOTDIA 3.78
RIMDIA 3.40
YOUNGSMOD 3x107

POISSON 0.3
MSHFILE gear.msh
TPLFILE medium.tpl

Table 9.8: Modification menu for the gear tooth

Item Description
QUADTIPMOD TRUE
ROLLQUADTIPMOD 19.60
MAGQUADTIPMOD 0.0005
LEADCROWN 0.0005

Table 9.9: Gear rim data

Item Description
RIMTYPE SIMPLE
RIMDIA 3.40
INNERDIA 2.40
WIDTH 1.00
OFFSET 0.00
AXIALORDER 2
CIRCORDER 16
ELEMTYPE QUADRATIC
NDIVSRADIAL 4
NTHETA 64
NDIVSWIDTH 4
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Table 9.10: Setup data

Item Description
SEPTOL 0.01
NPROFDIVS 8
NFACEDIVS 12
DSPROF 0.001
ZEROINITIAL TRUE
INITIALTIME 0.0
NRANGES 1
RANGE 1
SOLMETHOD STATIC
NTIMESTEPS 11
DELTATIME 0.1
STARTSPEEDFACTOR 1.0
STARTTORQUEFACTOR 1.0
ENDTORQUEFACTOR 1.0
SAVEPERIODICALLY FALSE
OUTPUTRESTART FALSE
POSTPROCWRITE TRUE
POSTFILENAME postproc.dat
NSTEPSWRITE 1
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Table 9.11: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 10
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 20
TOOTHEND 2
SEPTEETH TRUE
SPROFBEGIN 0.00
SPROFEND 16.00
NUMSPROF 51
TFACEBEGIN -1.00
TFACEEND 1.00
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

9.1.2 Results and discussion

A graph for the maximum principal normal stress against time for tooth numbers 20, 1 and 2 in
the fillet region of the pinion obtained from the searchstress menu is shown in Figure 9.1.

The maximum stress in this case is 5.230x104psi for tooth no.1. The searchstress data to
extract this graph is shown in Table 9.11.

The stress values hence obtained are shown in Table 9.12. Figure 9.2 shows a plot of Tip
radius against the Max ppl normal stress. It can be concluded from the graph that as you
increase the tip radius, the stress decreases. From the graph it can be seen that the variation in
the results for the three templates is 3.7% at a tip radius of 0.01in. The difference in the results
between fineroot and finest templates is about 2.7% at 0.01in tip radius. The agreement is better
for larger values of tip radius. For a radius of 0.045in the variation between the templates is less
than 1.3% and the difference between the fineroot and finest templates is about 0.5%.

The time required to run the analysis for each case with the medium, fineroot and finest
templates was about 20mins, 1hr and 5hrs respectively on a Intel pentium4, 1700MHz CPU.



9.1 Effect of Tip radius on the max ppl normal stress 119

-0
.6

00
00

0
-0

.4
00

00
0

-0
.2

00
00

0
-0

.0
00

00
0

0.
20

00
00

0.
40

00
00

0.
60

00
00

0.
00

00
00

10
00

0.
00

00
00

20
00

0.
00

00
00

30
00

0.
00

00
00

40
00

0.
00

00
00

50
00

0.
00

00
00

60
00

0.
00

00
00

T
im

e

M
ax

 P
pl

 n
or

m
al

 s
tr

es
s 

(s
1)

 o
n 

PI
N

IO
N

 a
t F

IL
L

_S
U

R
FA

C
E

1

s1
=

3.
89

38
00

E
+

00
4,

 tt
h=

20
, t

im
e=

-4
.0

00
00

0E
-0

01
, s

=
7.

36
00

00
E

+
00

0,
 t=

-2
.8

00
00

0E
-0

01
, d

pt
h=

0.
00

00
00

E
+

00
0

s1
=

5.
23

03
60

E
+

00
4,

 tt
h=

1,
 ti

m
e=

1.
00

00
00

E
-0

01
, s

=
7.

36
00

00
E

+
00

0,
 t=

-4
.0

00
00

0E
-0

02
, d

pt
h=

0.
00

00
00

E
+

00
0

s1
=

2.
90

51
30

E
+

00
4,

 tt
h=

2,
 ti

m
e=

6.
00

00
00

E
-0

01
, s

=
8.

32
00

00
E

+
00

0,
 t=

1.
60

00
00

E
-0

01
, d

pt
h=

0.
00

00
00

E
+

00
0

Figure 9.1: Graph of Max ppl normal stresses against time for pinion tooth nos.20,1 and 2, for
a tip radius 0.02in with a medium template
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Table 9.12: Max ppl normal stress values for different radii

Tip radius Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

0.010 56644.23 54495.34 56025.16
0.015 53667.44 52024.40 53145.63
0.020 51024.51 49802.44 50643.22
0.025 48973.85 48006.89 48604.28
0.030 47156.78 46325.61 46724.35
0.035 45678.29 44922.02 45235.11
0.040 44217.18 43564.49 43795.09
0.045 42940.21 42361.25 42556.73
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Figure 9.2: Graph of Max ppl normal stresses against tip radii (0.010 in-0.045 in) for medium,
fineroot and finest templates
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9.2 Effect of Tooth thickness on the max ppl normal stress

To study the effect of tooth thickness on the stress values we run the analysis for different tooth
thicknesses for all the mesh templates. We vary the thickness from 0.1in to 0.16in in steps of
0.005in. The tip radius for all the tooth thickness values is 0.02in. The stress values hence
obtained are shown in Table 9.13. Figure 9.3 shows a plot of the Max ppl normal stress against
tooth thickness. It can be concluded from the graph that as you go on decreasing the thickness,
the stress increases. From the graph it can be seen that the variation in the results for all the
templates is about 2.6% at 0.16in tooth thickness. The difference between the fineroot and finest
templates is about 1.8%.

Table 9.13: Max ppl normal stress values for different tooth thicknesses

Tooth thickness Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

0.100 75526.61 75884.99 75106.59
0.105 73026.86 72687.67 72284.21
0.110 70465.08 69862.45 69704.46
0.115 67918.90 67124.32 67122.06
0.120 65388.86 64575.92 64655.39
0.125 62853.14 62149.01 62179.37
0.130 60491.53 59888.73 60158.73
0.135 58420.23 57747.31 58252.61
0.140 56632.43 55717.01 56339.82
0.145 54886.12 53905.71 54455.09
0.150 53197.34 52162.69 52668.94
0.155 51711.23 50566.00 51306.36
0.160 50316.66 48970.18 49904.44
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Effect of Tooth Thickness
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Figure 9.3: Graph of Max ppl normal stresses against tooth thickness (0.10in-0.16in) for medium,
fineroot and finest templates
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9.3 Effect of number of elements in the face direction on
the max ppl normal stress

To study the effect of number of elements along the face width on the stress values we run the
analysis for different NFACEELEMS for all the mesh templates. The polynomial order of the
elements DISPLORDER is maintained at 3. We vary the NFACEELEMS parameter from 2 to
10 in steps of 2. The tip radius and the tooth thickness values for all the test cases are 0.02in
and 0.15708in respectively. The stress values hence obtained are shown in Table 9.14. Figure 9.4
shows a plot of the Max ppl normal stress against the no. of face elements for the medium and
fineroot templates. Results for higher elements with the finest mesh could not be obtained due
to CPU limitations. As expected the stress values converge for higher number of elements. For
the fineroot template, the difference between 2 elements and 10 elements is less than 0.1%. This
implies that the stress variation in the face direction in the fillet can be well approximated even
with 4 elements when a polynomial order of 3 is used along the face width.

Table 9.14: Max ppl normal stress values for different number of elements along the face width

Nfaceelems Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

2 51107.14 49911.72 50799.47
4 51024.51 49802.44 50643.22
6 51084.53 49867.04 -
8 51082.93 49865.59 -
10 51079.74 49862.72 -
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Effect of Number of Elements in the Face Direction
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Figure 9.4: Graph of Max ppl normal stresses against No.of elements along the face width for
medium and fineroot templates



9.4 Effect of displacement order on the max ppl normal stress 125

Table 9.15: Max ppl normal stress values for different Displ. order

Displ.order Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

3 51024.51 49802.44 50643.22
4 51087.63 49868.23 50643.22
5 51080.99 49863.92 -
6 51081.50 49864.99 -

9.4 Effect of displacement order on the max ppl normal
stress

In order to study the effect of the element polynomial order DISPLORDER on the stress values
we run the analysis for different DISPLORDER for all the mesh templates. With 4 elements
along the face width, we vary the DISPLORDER parameter from 3 to 6 in steps of 1. The tip
radius and the tooth thickness values for all the test cases are 0.02in and 0.15708in respectively.
The stress values hence obtained are shown in Table 9.15. Figure 9.5 shows a plot of the Max
ppl normal stress against the displacement order for the medium and fineroot templates. Results
for higher order with the finest mesh could not be obtained due to CPU limitations. The results
converge for higher order as expected. For the fineroot template, the difference in stress between
order 6 and and order 3 is about 0.1%. It is evident that in this example, the variation of stress
in the face direction is gradual enough that order 3 interpolation is sufficient when 4 elements
are used to span the face width.

9.5 Conclusions

The stress values have been shown to converge with increasing refinement of the finite element
mesh. For typical gears with a full fillet radius, this convergence study shows that we have a
discretization error of about 1.0% in the coarsest mesh generated by using the medium template.
When a very small fillet radius (0.01in.) was used, we observed the discretization error climb to
4.0%. The stress values converge with higher number of elements along the face direction and
also with a higher polynomial order.
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Effect of Displacement Order
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Chapter 10

Fatigue theory and life prediction
using the Helical gear program

10.1 Introduction

Most engineering design projects involve machine parts subjected to fluctuating or cyclic loads.
Such loading induces fluctuating or cyclic stresses that often result in failure by fatigue. Materials
fracturing under repeated loadings were found to exhibit no gross deformation and gave the
appearance of having suddenly snapped. It is difficult to detect the progressive changes in the
material properties that occur during fatigue stressing and failure may therefore occur with
little or no warning. Also, periods of rest, with the fatigue stress removed, do not lead to any
measurable healing or recovery from the effects of prior cyclic stressing. Thus the damage done
during the fatigue process is cumulative and generally unrecoverable.

With the increasing demand for more efficient and economic components and structures
operation at higher speeds with minimum weight design the number of failures by fatigue has
continued to increase. It is by far the most common cause of failure of load carrying metallic
parts operating at or close to room temperature.

10.2 Fatigue characteristics

Fatigue may be characterised as a progressive failure phenomenon that proceeds by the initiation
and propagation of cracks to an unstable size. Fatigue crack nuclei, from which crack grows and
often propagate to failure, are thought to be formed through the movements of dislocations
that produce fine slip bands at the crystal surfaces. Under cyclic loading these fine slip bands
ultimately turn out to be the regions in which fatigue cracks are initiated. Further, the fatigue
slip bands gives rise to intrusions as a result of reversed slip in adjacent slip planes caused by
load reversal. Once formed, these intrusions grow in depth by reverse slip process, and their
growth may well constitute a major portion of the fatigue of the metal. Crack propagation and
hence fatigue are affected by various factors such as material composition, grain size and grain
direction, heat treatment, welding, geometrical discontinuities, surface conditions, size, residual
surface stresses, corrosion, fretting, operating temperature, operating speed, etc.

A term called fatigue limit(endurance limit) is very commonly used while studying fatigue
failure. It is the stress level below which an infinite number of cycles can be sustained without
failure. To characterize the failure response of components in the finite life range, the term
fatigue strength at a specified life, SN is used. The term fatigue strength identifies the stress
level at which failure will occur at specified life.
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Figure 10.1: Completely reversed cyclic stress plot

10.3 Low and High cycle fatigue

It is observed that the fatigue process embraces two domains of cyclic stressing or straining that
are significantly different in character, and in each of which failure is probably produced by
different physical mechanisms. One domain of cyclic loading is that for which significant plastic
strains occur during each cycle. This domain is associated with high loads and short lives, or low
number of cycles to produce fatigue failure, and is commonly referred to as low cycle fatigue.

The other domain of cyclic loading is that for which the strain cycles are largely confined to
the elastic range. This domain is associated with lower loads and long lives, or high number of
cycles to produce fatigue failure, and is commonly referred to as high cycle fatigue. Low-cycle
fatigue is typically associated with cycle lives up to about 104 or 105 cycles, and high cycle
fatigue for lives greater than about 104 or 105 cycles. In most gearing applications fatigue failure
is associated with high cycle fatigue. Hence we address the helical fatigue failure problem based
on the theory related to the high cycle fatigue.

10.4 Fatigue loading

As discussed earlier fatigue failure is caused in materials or components when subjected to cyclic
or alternating stress. A simple example of a fatigue stress spectrum to which an element may be
subjected could be a zero-mean sinusoidal stress-time pattern of constant amplitude and fixed
frequency, applied for a specified number of cycles. Such a stress-time pattern, often referred to
as a completely reversed cyclic stress is shown in Figure 10.1.

Using the figure we define the following terms and symbols so as to calculate the fatigue
strength or fatigue life for a helical gear set.
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Figure 10.2: Nonzero mean stress-time pattern

σmax = Maximum Stress in the cycle (10.1)
σmin = Minimum Stress in the cycle (10.2)

σm = Mean Stress

=
σmax + σmin

2
(10.3)

σa = Alternating Stress amplitude

=
σmax − σmin

2
(10.4)

∆σ = Range of Stress
= σmax − σmin (10.5)

R = Stress Ratio

=
σmin

σmax
(10.6)

A = Amplitude Ratio

=
σa

σm
(10.7)

Some of the examples of Stress-time patterns are shown in Figures 10.2 through 10.7.
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Figure 10.3: Released tension, R=0, stress-time pattern
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Figure 10.4: Changing amplitude stress-time pattern
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Figure 10.5: Quasi-random stress-time pattern

Figure 10.6: Completely reversed ramp stress-time pattern
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Figure 10.7: Stress-time pattern with distorted peaks
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10.5 Example of a laboratory fatigue testing

Designing machine parts or structures that are subjected to fatigue loading is usually based on
the results of laboratory fatigue tests using specimens of the material of interest. An example
of a laboratory fatigue testing called as the rotating bending machine of the constant bending
moment type is shown in Figure 10.8.

Figure 10.8: Schematic of the rotating-bending fatigue testing machine of the constant bending
moment type
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Figure 10.9: Stress-time pattern for point A at the surface of the critical section
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With this type of device the region of the rotating beam between the inboard bearings
is subjected to a constant bending moment all along its length. While under the influence
of this constant moment, the specimen is caused to rotate with the drive spindles about the
longitudinal axis. Any point on the surface is thereby subjected to a completely reversed stress-
time pattern, as can be deduced by following the stress history of a point as it rotates from
maximum compression at the top position down through zero stress when at the side through
maximum tension at the bottom, and then back through zero to maximum compression at the
top again. The stress-time pattern for a point on the surface of the critical section is shown in
Figure 10.9.

10.6 Gear fatigue failure

Gears may fail by wear and scuffing but the main causes of failure are bending fatigue leading to
breakage at the root of the tooth and surface contact fatigue leading to pitting. Fatigue failure
in gears can be broadly classified in to two types:

• Those arising from a tensile fatigue failure of the material at the root of a gear tooth i.e.
away from the area of contact between intermeshing teeth.

• Those arising from compressive stresses on the working surface of the gear tooth, where
it is in contact with the intermeshing gear.

Tensile fatigue failure occurs in materials subjected to fluctuating stresses where the continu-
ously repeated stress is much lower than the static tensile strength of the material. This type of
high cycle fatigue failure generally depends upon the number of stress cycles rather than on the
total time under load and does not occur below a certain stress, called the fatigue and endurance
limit. In a homogeneous material tensile fatigue crack always starts at and propagates from the
point of maximum stress concentration. Under normal operation and with correct design the
point of maximum tensile stress concentration on a gear is at the root of the tooth on the loaded
side. The crack progresses through the tooth to the root on the opposite side. During this
crack propagation the tooth can bend over and shed the load on to the next tooth which also
ultimately fails.

Surface fatigue failure is brought about by cumulative damage to the gear material caused by
repeated application of contact stresses. Surface contact fatigue does not usually lead to catas-
trophic breakage (as in the case of a tensile fatigue failure) but rather to progressive deterioration
of the surface by pitting or spalling.
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10.7 Running the Helical3D program for fatigue failure

10.7.1 The example file

Load the file fatigue.ses from the FATIGUE directory located in the SAMPLES directory.
The data for the fatigue test model is similar to the data we used for convergence study. We

run the analysis for one mesh cycle.

10.7.2 Locating the point of maximum stress

The SEARCHSTRESS menu is used to locate the point of maximum stress on the profile,
facewidth and the depth of a tooth. A plot of maximum principal stress against time for Pinion
tooth no.1 is shown in Figure 10.10. The legend on the top right corner of the figure shows the
location along the profile(s), width(t) and the depth(dpth) of the maximum stress point. The
search stress menu used to plot this graph is shown in Table 10.1. The depth on the surface of
the tooth is 0.00. As can be seen from the stress results the maximum stress occurs at profile,
s = 7.38. The involute profile as shown in Figure 10.11 goes from s = 0 to s = 48. There are 8
elements along the profile(element nos.3 through 10). So each element corresponds to a profile
distance of 6 units. From figure 10.11 and figure 10.12 the point of maximum stress lies between
the profile, s = 6 and s = 12. To find the corresponding XI(ξ) co-ordinate we use the following:

ξ − (−1)
2

=
7.38− 12
6− 12

ξ = 0.54

The ETA(η) co-ordinate on the surface is 1.00.
Since there are 4 finite elements along the width and the point of maximum stress lies close

to 0.00(t = −0.02) we are interested in element numbers 40 and 76. The element orientation is
shown in Figure 10.12. Refer to the appendix of the Helical Users manual for further details.
Note that ZETA(ζ) is along the facewidth direction. So as to locate the exact ζ value we apply
FEPROBES close to ζ = +1 for element no.40 and ζ = −1 for element no.76. The FE probe
menu for one of the probes is shown in table 10.2. Analysing the FE probe data the co-ordinates
of the maximum stress point is found to be (ξ, η, ζ) = (0.54, 1.00, 0.90) on element no.40. For
this point the plot of maximum and minimum principal normal stress against time is shown in
Figure 10.13.
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Figure 10.10: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu



10.7 Running the Helical3D program for fatigue failure 137

Figure 10.11: The MEDIUM.TPL template file.
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Figure 10.12: Orientation of ξ, η and ζ on the tooth
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Table 10.1: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 10.2: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 40
XI 0.54
ETA 1.00
ZETA 0.90
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT
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Figure 10.13: Plot of maximum and minimum principal normal stress for a point on the pinion
tooth against time
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10.7.3 Results

The maximum principal and the minimum principal normal stress plot obtained from the
FE probe data is shown in Figure 10.13. The maximum principal normal stress (σmax) =
5.2330x104psi and the minimum principal normal stress (σmin) = −9.7156x103psi. Hence, Al-
ternating stress, σa = 3.10232x104psi and the Mean stress, σm = 2.13075x104psi.



142 Fatigue theory and life prediction using the Helical gear program

Figure 10.14: An example of an S-N curve for predicting fatigue life

10.8 Calculating the fatigue life

The stress life, S-N, method was the first approach used in an attempt to understand and quantify
fatigue life. The S-N approach is still widely used in design applications where the applied stress
is primarily within the elastic range of the material and the resultant lives (cycles to failures) are
long, such as power transmission shafts. The S-N diagram is a plot of alternating stress, S, versus
cycles to failure, N. One of the major drawbacks of the stress-life approach is that it ignores the
true stress-strain behavior and treats all strains as elastic. This may be significant since the
initiation of fatigue cracks is caused by plastic deformation. The simplifying assumptions of the
S-N approach are valid only if the plastic strains are small. At long lives most steels have only
a small component of cyclic strain which is plastic and the S-N approach is valid. An example
of an S-N plot is shown in Figure 10.14.

The magnitude of mean stress has an important influence on the fatigue behavior of a spec-
imen or a machine part. Most service applications involve nonzero mean cyclic stresses. The
present case under consideration also is an example of a nonzero mean cyclic stress. The influ-
ence of non-zero mean stress on failure can be estimated by empirical relationships (Figure 10.15)
that relate the failure at a given life under non-zero mean conditions to failure at the same life
under zero mean cyclic stresses.
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Figure 10.15: Various empirical relationships for estimating the influence of nonzero-mean stress
on fatigue failure

10.8.1 Goodman’s Linear relationship

Let,

σa = Alternating stress amplitude
σN = Fatigue strength
σm = Mean stress
σu = Ultimate strength

σyp = Yield point stress

Goodman’s linear relationship states that fatigue failure occurs when

σa

σN
+

σm

σu
≥ 1 (10.8)

For G43400 steel 1 with tensile strength 140 kpsi and fatigue limit 71 kpsi, using the results for
σa and σm, the Goodman linear relationship gives

σa

σN
+

σm

σu
= 0.5890
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10.8.2 Gerber’s parabolic relationship

Gerber’s parabolic relationship states that fatigue failure occurs when

σa

σN
+ (

σm

σu
)2 ≥ 1 (10.9)

For G43400 steel with tensile strength 140 kpsi and fatigue limit 71 kpsi, the Gerber’s parabolic
relationship gives

σa

σN
+ (

σm

σu
)2 = 0.4600

10.8.3 Soderberg’s linear relationship

Soderberg’s linear relationship states that fatigue failure occurs when

σa

σN
+

σm

σyp

≥ 1 (10.10)

For G43400 steel with yield strength 100 kpsi and fatigue limit 71 kpsi, the Soderberg’s linear
relationship gives

σa

σN
+

σm

σyp

= 0.6499

10.8.4 Elliptic relationship

Elliptic relationship states that fatigue failure occurs when

(
σa

σN
)2 + (

σm

σu
)2 ≥ 1 (10.11)

For G43400 steel with tensile strength 140 kpsi and fatigue limit 71 kpsi, the Elliptic relationship
gives

(
σa

σN
)2 + (

σm

σu
)2 = 0.2140

The above theories can be used to find the alternating stress at which fatigue failure will occur.
For instance, according to the Goodman’s linear relationship, for a steel with tensile strength
80 kpsi, the fatigue stress is 42.285 kpsi. Using an S-N plot for steel shown in Figure 10.16 2,
the corresponding fatigue life is 4.5 × 105 cycles. Note that the S-N plot used in the figure is
not a standard curve for gear materials. It is used to demonstrate the ability of the Helical3D
program in calculating the fatigue life.
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Figure 10.16: Example of an S-N plot for wrought steel
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10.9 Effect of rigid internal diameter on fatigue life

So as to study the effect of a different boundary condition on fatigue life we make the inner
diameter of the pinion as rigid. Load the file fatigueinnerdiarigid.ses located in the FATIGUE
directory. The BEARING menu data for this case is shown in Table 10.3.

Table 10.3: Bearing menu to specify rigid inner diameter for the pinion

Item Description
RIGIDRACE TRUE
BEARING FALSE

10.9.1 Locating the point of maximum stress

The SEARCHSTRESS menu is used to locate the point of maximum stress on the profile,
facewidth and the depth of a tooth. A plot of maximum principal stress against time for Pinion
tooth no.1 is shown in Figure 10.17. The legend on the top right corner of the figure shows the
profile(s), width(t) and the depth(dpth) data of the maximum stress point. The search stress
menu used to plot this graph is shown in Table 10.4. The depth on the surface of the tooth
is 0.00. As can be seen from the stress results the maximum stress occurs at profile, s = 7.30.
Thus the point of maximum stress lies between the profile, s = 6 and s = 12. To find the
corresponding XI(ξ) co-ordinate we use the following:

ξ − (−1)
2

=
7.30− 12
6− 12

ξ = 0.56

The ETA(η) co-ordinate on the surface is 1.00.
Since there are 4 finite elements along the width and the point of maximum stress lies close

to 0.00(t = 0.04) we are interested in element numbers 40 and 76. Refer to the appendix of the
Helical Users manual for further details. So as to locate the exact ζ value we apply FEPROBES
close to ζ = +1 for element no.40 and ζ = −1 for element no.76. The FE probe menu for one of
the probes is shown in table 10.5. Analysing the FE probe data the co-ordinates of the maximum
stress point is found to be (ξ, η, ζ) = (0.56, 1.00, -0.80) on element no.76. For this point the
plot of maximum and minimum principal normal stress against time is shown in Figure 10.18.
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Figure 10.17: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu
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Table 10.4: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 10.5: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 76
XI 0.56
ETA 1.00
ZETA -0.80
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT
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Figure 10.18: Plot of maximum and minimum principal stresses against time for pinion tooth
for the case with rigid pinion inner diameter
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10.9.2 Results

The maximum principal and the minimum principal normal stress plot obtained from the
FE probe data is shown in Figure 10.18. The maximum principal normal stress (σmax) =
5.4898x104psi and the minimum principal normal stress (σmin) = −5.3251x103psi. Hence, Al-
ternating stress, σa = 3.0111x104psi and the Mean stress, σm = 2.4786x104psi.

According to the Goodman’s linear relationship, for a steel with tensile strength 80kpsi, the
fatigue stress using above data is 43.628kpsi. Using an S-N plot for steel shown in Figure 10.16,
the corresponding fatigue life is 4.30 × 105 cycles. Note that the S-N plot used in the figure is
not a standard curve for gear materials. It is used to demonstrate the ability of the Helical3D
program in calculating the fatigue life.

10.10 Fatigue life for a thin flexible rim model

Load the file fatiguethinrim.ses located in the FATIGUE directory. The BEARING menu data
for this case is shown in Table 10.6.

Table 10.6: Bearing menu to specify flexible inner diameter for the pinion

Item Description
RIGIDRACE FALSE
CIRCORDER 8
AXIALORDER 2
BEARING FALSE

10.10.1 Locating the point of maximum stress

A plot of maximum principal stress against time for Pinion tooth no.1 is shown in Figure 10.19.
Table 10.7 shows the searchstress menu to obtain this plot. Analysing the FE probe data the
co-ordinates of the maximum stress point is found to be (ξ, η, ζ) = (0.226, 1.00, 0.70) on element
no.40. For this point the plot of maximum and minimum principal normal stress against time is
shown in Figure 10.20. An example of a FEPROBE menu is shown in Table 10.8.
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Figure 10.19: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu
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Table 10.7: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 10.8: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 40
XI 0.226
ETA 1.00
ZETA 0.70
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT
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Figure 10.20: Plot of maximum and minimum principal stresses against time for pinion tooth
for the case with thin flexible pinion inner diameter
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10.10.2 Results

The maximum principal and the minimum principal normal stress plot obtained from the
FE probe data is shown in Figure 10.20. The maximum principal normal stress (σmax) =
3.9462x104psi and the minimum principal normal stress (σmin) = −9.659x103psi. Hence, Alter-
nating stress, σa = 2.4560x104psi and the Mean stress, σm = 1.49015x104psi.

According to the Goodman’s linear relationship, for a steel with tensile strength 80kpsi, the
fatigue stress using above data is 30.181kpsi. The fatigue life for this stress is almost infinite.

10.11 Cumulative damage

The S-N curves discussed in previous section are developed for constant stress amplitude op-
eration. But, in virtually every engineering application where fatigue is an important failure
mode, the alternating stress amplitude may be expected to vary or change in some way during
the service life. Hence the usage of S-N curves in such cases is inapplicable. Therefore theories
based on cumulative damage are used while predicting fatigue failure.

The fatigue damage produced at any given cyclic stress amplitude will be related to the total
number of cycles of operation at that stress amplitude and also related to the total number
of cycles that would be required to produce failure of an undamaged specimen at that stress
amplitude. It is further postulated that the damage incurred is permanent and operation at
several different stress amplitudes in sequence will result in an accumulation of total damage
equal to the sum of the damage increments accrued at each individual stress level. When the
total accumulated damage reaches a critical value, fatigue failure occurs. Many different theories
based on this concept of cumulative damage have been proposed. We discuss here two theories
very commonly used for the purposes of assessing fatigue damage.

10.11.1 Linear damage theory

The linear damage theory is also referred as the Plamgren-Miner hypothesis or the linear damge
rule. As discussed earlier the S-N curve(Figure 10.21) at a constant stress amplitude S1 will
produce complete damage, or failure, in N1 cycles. Operation at stress amplitude S1 for a
number of cycles n1 smaller than N1 will produce a smaller fraction of damage, D1. D1 is
usually termed as the damage fraction. Operation over a spectrum of different stress levels
results in a damage fraction Di for each of the different stress levels Si in the spectrum. When
this damage fractions sum to unity, failure is predicted, that is,

Failure is predicted to occur if:

D1 + D2 + ... + Di−1 + Di ≥ 1 (10.12)

The Palmgren-Miner hypothesis asserts that the damage fraction at any stress level Si is
linearly proportional to the ratio of number of cycles of operation to the total number of cycles
that would produce failure at that stress level, that is

Di =
ni

Ni
(10.13)

Thus we can also say that failure is predicted to occur if:

n1

N1
+

n2

N2
+ ... +

ni−1

Ni−1
+

ni

Ni
≥ 1 (10.14)

or failure is predicted to occur if:

i∑

j=1

nj

Nj
≥ 1 (10.15)
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Figure 10.21: S-N plot illustrating the linear damage theory
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Figure 10.22: S-N curve approximation proposed by Gatt

The Palmgren-Miner hypothesis is widely used because of its simplicity and the experimental
fact that the other much more complex cumulative damage theories do not always yield a signif-
icant improvement in failure prediction reliability. The most significant drawback of the theory
though is that no influence of the order of application of various stress levels is recognized, and
damage is assumed to accumulate at the same rate at a given stress level without regard to past
history. Experimental data suggest that the order in which various stress levels are applied does
have a significant influence and also that the damage rate at a given stress level is a function of
the prior cyclic stress history.

10.11.2 Gatts Cumulative damage theory

Gatts postulated that the fatigue strength and the the fatigue limit change continuously with
the application of stress cycles, and that the change is proportional to a function of the stress
amplitude.

The S-N curve3 according to the Gatt’s theory is given as:

kN =
1

S − Se0

− 1
S(1− C)

(10.16)

where,

3See Failure of materials in mechanical design by J.A. Collins.
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C, k = Material constant and proportionality constant
Se0 = fatigue limit when N = 0
Sq = Instantaneous value of strength
Se = Fatigue limit, a function of cyclic stress history, not a constant

= CSq

N = Number of cycles of stress applied
S = Amplitude of applied cyclic stress

Figure 10.22 shows the S-N curve based on the Gatt’s cumulative damage theory.
Knowing the material properties and calculating the stress amplitude from the FE probe data

it is possible to calculate the fatigue life for a hypoid gear pair based on the Gatts cumulative
damage theory.

10.12 Fatigue life based on duty cycle for a gear set

We assume the gear set shown in example file fatigue.ses to be running at 90% of the total
torque.

Load the file fatigueload1.ses located in the FATIGUE directory. We now run the gear set
at about 110% of the total load(Torque=1222.22 lbf.in). For this load the maximum sress plot
from the search stress menu is shown in Figure 10.23. The maximum stress point using the FE
probe data is found to be (0.546,1.00,0.91). For this point the maximum and minimum principal
normal stress plot is shown in Figure 10.25. The corresponding fatigue life hence obtained is
6.0× 104cycles.

Load the file fatigueload2.ses located in the FATIGUE directory. We now run the gear
set at 100% load(Torque = 1111.11lbf.in). For the point (0.546,1.00,0.91) on element no.40 the
maximum and minimum principal normal stress plot is shown in Figure 10.24. The corresponding
fatigue life hence obtained is 2.3× 105cycles.

Load the file fatigueload3.ses located in the FATIGUE directory. We now run the gear
set at Torque = 500lbf.in. For the point (0.546,1.00,0.91) on element no.40 the maximum and
minimum principal normal stress plot is shown in Figure 10.26. The corresponding fatigue life
hence obtained is infinite.

Load the file fatigueload4.ses located in the FATIGUE directory. We now run the gear set
at Torque = 1000lbf.in. For the point (0.546,1.00,0.91) on element no.40 the maximum and
minimum principal normal stress plot is shown in Figure 10.27. The corresponding fatigue life
hence obtained is 5.2× 105cycles.

The load and the corresponding fatigue life is summarised in Table 10.9.

Table 10.9: Fatigue life for a duty cycle

Torque(lbf-in) Fatigue
life(cycles)

Running
time (%)

500 ∞ 70%
1000 5.2e5 20%
1111.11 2.3e5 9%
1222.22 6.0e4 1%



158 Fatigue theory and life prediction using the Helical gear program

-0
.6

00
00

0
-0

.4
00

00
0

-0
.2

00
00

0
-0

.0
00

00
0

0.
20

00
00

0.
40

00
00

0.
60

00
00

0.
80

00
00

1.
00

00
00

30
00

0.
00

00
00

40
00

0.
00

00
00

50
00

0.
00

00
00

60
00

0.
00

00
00

70
00

0.
00

00
00

T
im

e

M
ax

 P
pl

 n
or

m
al

 s
tr

es
s 

(s
1)

 o
n 

PI
N

IO
N

 a
t F

IL
L

_S
U

R
FA

C
E

1

s1
=

6.
01

15
40

E
+

00
4,

 tt
h=

1,
 ti

m
e=

1.
00

00
00

E
-0

01
, s

=
7.

36
00

00
E

+
00

0,
 t=

-2
.0

00
00

0E
-0

02
, d

pt
h=

0.
00

00
00

E
+

00
0

Figure 10.23: Maximum principal normal stress plot against time for pinion tooth no.1 for a
output torque of 1222.22 lbf.in
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Figure 10.24: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 1222.22 lbf.in
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Figure 10.25: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 1111.11 lbf.in
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10.13 Calculating life based on cumulative damage theory

From the Linear damage theory failure occurs when:

n1

N1
+

n2

N2
+ ... +

ni−1

Ni−1
+

ni

Ni
= 1 (10.17)

Substituting the values from Table 10.9 in the above we get:

0.7n

∞ +
0.2n

5.2× 105
+

0.09n

2.3× 105
+

0.01n

6.0× 104
= 1 (10.18)

Thus, the life cycle for the gear set is 1.06091× 106cycles.

10.14 Conclusions

Helical3D program can be employed to calculate the fatigue life for gear bodies. Although for
the example cases we gave considered a helical gear pair the same procedure can be applied to
spur gear pair. As can be seen from the Table 10.9 as the load increases the fatigue life is found
to decrease as expected. We feel calyx gives a reasonable approach towards calculation of fatigue
life although we cannot verify the results obtained from Calyx with experimental or analytical
calculations due to lack of information at this time.
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Appendix A

Values of m and n for various
values of θ

The following table( A.1) is taken from the paper by H.L.Whittemore and S.N.Petrenko, Natl.
Bur. Std. Tech. Paper 201, 1921. An extension for 0 < θ < 30o is given by M.Kornhauser, J.
Appl.Mech.,vol. 18, pp. 251-252, 1951.

Table A.1: Values of m and n for various values of θ

α(deg) m n
0 ∞ 0.00
0.5 61.40 0.108
1 36.89 0.1314
1.5 27.48 0.1522
2 22.26 0.1691
3 16.50 0.1964
4 13.31 0.2188
6 9.790 0.2552
8 7.860 0.2850
10 6.612 0.319
20 3.778 0.408
30 2.731 0.493
40 2.136 0.567
50 1.754 0.641
60 1.486 0.717
70 1.284 0.802
80 1.128 0.893
90 1.00 1.00
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