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Chapter 1

Introduction

The HypoidFaceMilled program is used for the analysis of hypoid gear pairs. The Users
manual describes the various features of the HypoidFaceMilled package. It provides detailed
information to help you run the program. The Validation manual describes through examples
some of the applications of the HypoidFaceMilled program.

Test cases are documented so as to study the effect of various parameters such as tip radius,
tooth thickness, number of face elements and displacement order on the stresses for hypoid gears
and also the convergence of the stress values for different types of mesh templates. Finally the
manual discusses the application of the HypoidFaceMilled program related to fatigue theory
and life prediction in hypoid gears.

User should read the Users manual before trying out the examples in the Validation
manual. All the files referred to in the Validation manual are in the Working directory created
during the time of installation.
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Chapter 2

Convergence study

The test cases described in this chapter are meant to study the effect of various parameters such
as tip radius, thickness, nfaceelems and displorder on the maximum principal normal stress for a
hypoid pinion and also the convergence of the stress values for different types of mesh templates.

2.1 Running the study cases

The data for the example problem is in English units. The outputs are also in English units.
Table 2.1 shows the English units for the physical quantities used to run the test cases.

Tables 2.2 through 2.10 show the data to be entered in the EDIT menu for running the
test cases. No assembly errors are considered for the pinion and the gear. Also, pinion tooth
modifications are not applied for these test cases. 11 time steps covering one mesh cycle were
run.
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Table 2.1: Units used for the test cases

Physical quantity English
LENGTH in
TIME secs
ANGLE deg or rad
MASS lbf.s2/in
MOMENT OF INERTIA lbf.s2.in
STIFFNESS lbf/in
SPEED RPM
TORQUE lbf.in
YOUNGS MODULUS lbf/in2

DENSITY lbf.s2/in4

LOAD lbf
STRESSES psi

Table 2.2: System configuration parameters

Item Description
MODELTYPE CALYX3D
HANDPINION LEFT
OFFSET 0.00
ANGLE 90.00
LOADEDSIDE CONVEX
DRIVER PINION
MU 0.00
TORQUE 2613.33
RPM 100.00
DOASSEMBLYERRORS FALSE
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Table 2.3: Pinion common design and blank data

Item Description
NTEETH 12
NFACEELEMENTS 4
COORDORDER 4
DISPLORDER 3
THICKNESS 0.262
OUTERCONEDIST 3.691
FACEWIDTH 1.00
FACEANGLE 22.3167
BACKANGLE 18.4333
FRONTANGLE 18.4333
SPIRALANGLE 35.00
PITCHANGLE 18.4333
PITCHAPEX 0.00
FACEAPEX 0.00
ROOTAPEX 0.00
BASESURFACETYPE CYLINDER
BASECYLINDERDIAME 1.138
ISRACERIGID FALSE
AXIALORDER 1
CIRCORDER 4
YOUNGSMOD 3.00E7
POISSON 0.3
DENSITY 0.3
ALPHA 0.001
BETA 1E-7
TPLFILE Medium
MESHFILE pinioncalyx.msh
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Table 2.4: Machine parameters for concave and convex tooth side for the pinion

Item Concave side Convex side
RADIALSETTING 2.9478 2.80105
TILTANGLE 0.00 0.00
SWIVELANGLE 0.00 0.00
BLANKOFFSET 0.154576 -0.174262
ROOTANGLE 16.8667 16.8667
MACHCTRBACK -0.0402306 0.0541429
SLIDINGBASE 0.116727 -0.0157093
CRADLEANGLE 63.942 53.926
RATIOROLL 3.2427 3.10518
2C 0.00 0.00
6D 0.00 0.00
24E 0.00 0.00
120F 0.00 0.00
H1 0.00 0.00
H2 0.00 0.00
H3 0.00 0.00
V1 0.00 0.00
V2 0.00 0.00
V3 0.00 0.00

Table 2.5: Cutter settings for concave and convex tooth side of a pinion

Item Concave Convex
POINTRADIUS 2.96562 3.07131
BLADEANGLE 18.0457 24.3374
EDGERADIUS 0.045 0.045
TYPE Straight Straight



2.1 Running the study cases 7

Table 2.6: Gear common design and blank data

Item Description
NTEETH 36
NFACEELEMENTS 4
COORDORDER 4
DISPLORDER 3
THICKNESS 0.15
OUTERCONEDIST 3.691
FACEWIDTH 1.00
FACEANGLE 72.50
BACKANGLE 71.5667
FRONTANGLE 71.5667
SPIRALANGLE 35.00
PITCHANGLE 71.5667
PITCHAPEX 0.00
FACEAPEX 0.00
ROOTAPEX 0.00
BASESURFACETYPE CONE
BASECONEANGLE 61.50
BASECONEAPEX 0.00
ISRACERIGID TRUE
YOUNGSMOD 3.00E7
POISSON 0.3
DENSITY 0.3
ALPHA 0.001
BETA 1E-7
TPLFILE Medium
MESHFILE gearcalyx.msh
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Table 2.7: Gear Machine data for concave and convex tooth side

Item Concave side Convex side
RADIALSETTING 2.85995 2.85995
TILTANGLE 0.00 0.00
SWIVELANGLE 0.00 0.00
BLANKOFFSET 0.00 0.00
ROOTANGLE 67.6833 67.6833
MACHCTRBACK 0.00 0.00
SLIDINGBASE 0.00 0.00
CRADLEANGLE 59.2342 59.2342
RATIOROLL 1.05167 1.05167
2C 0.00 0.00
6D 0.00 0.00
24E 0.00 0.00
120F 0.00 0.00
H1 0.00 0.00
H2 0.00 0.00
H3 0.00 0.00
V1 0.00 0.00
V2 0.00 0.00
V3 0.00 0.00

Table 2.8: Cutter settings for concave and convex tooth side of a gear

Item Concave Convex
POINTRADIUS 3.0325 2.9675
BLADEANGLE 22 22
EDGERADIUS 0.001 0.001
TYPE Straight Straight

Table 2.9: The rim parameters for the gear

Item Description
DORIM TRUE
NELEMS 4
ELEMTYPE LINEAR
AXIALORDER 1
CIRCORDER 8
NSEGS 4
ISEG 4
RA 1.75
RB 1.75
ZA 1.50
ZB 1.761
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Table 2.10: Analysis Setup data

Item Description
SEPTOL 0.005
NPROFDIVS 5
NFACEDIVS 15
DSPROF 0.005
INITIALTIME 0.0
NRANGES 1
RANGE 1
SOLMETHOD STATIC
NTIMESTEPS 11
DELTATIME 0.005
STARTSPEEDFACTOR 1.0
STARTTORQUEFACTOR 1.0
ENDTORQUEFACTOR 1.0
SAVEPERIODICALLY FALSE
OUTPUTRESTART FALSE
POSTPROCWRITE TRUE
POSTFILENAME postproc.dat
NSTEPSWRITE 1
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Table 2.11: Searchstress settings

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 10
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 12
TOOTHEND 2
SEPTEETH TRUE
SPROFBEGIN 0.00
SPROFEND 16.00
NUMSPROF 51
TFACEBEGIN -1.00
TFACEEND 1.00
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

2.2 Results and discussion

After the analysis is complete, a postprocessing data file is created in the working directory. A
graph for the maximum principal normal stress against time for tooth numbers 12, 1 and 2 in
the fillet region of the pinion obtained from the searchstress menu is shown in Figure 2.1.

The maximum stress in this case is 1.215× 105psi. The searchstress settings used to extract
this graph is shown in Table 2.11.
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Figure 2.1: Graph of Max ppl normal stresses against time for a tip radius 0.045in with a medium
template
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Table 2.12: Max ppl normal stress values for different radii

Tip radius Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

0.005 1.711E+05 1.892E+05 1.974E+05
0.01 1.638E+05 1.760E+05 1.812E+05
0.015 1.567E+05 1.661E+05 1.683E+05
0.02 1.500E+05 1.565E+05 1.581E+05
0.025 1.434E+05 1.482E+05 1.495E+05
0.03 1.370E+05 1.412E+05 1.421E+05
0.035 1.311E+05 1.351E+05 1.356E+05
0.04 1.259E+05 1.296E+05 1.299E+05
0.045 1.215E+05 1.266E+05 1.248E+05
0.05 1.192E+05 1.263E+05 1.224E+05
0.055 1.190E+05 1.260E+05 1.222E+05
0.06 1.187E+05 1.257E+05 1.220E+05
0.065 1.184E+05 1.254E+05 1.217E+05
0.07 1.174E+05 1.240E+05 1.205E+05
0.075 1.142E+05 1.208E+05 1.175E+05
0.08 1.099E+05 1.165E+05 1.133E+05
0.085 1.039E+05 1.104E+05 1.075E+05

2.2.1 Effect of Cutter Tip radius on the max ppl normal stress

In order to study the effect of cutter tip radius on the stress values we run the analysis for
different tip radii for all the mesh templates. We vary the tip radius from 0.005in to 0.085in in
steps of 0.005in. The stress values obtained are shown in Table 2.12. Figure 2.2 shows a plot
of Tip radius against the Max ppl normal stress. It can be concluded from the graph that as
you go on increasing the tip radius, the stress decreases. From the graph it can be seen that the
difference in the results for the medium and fineroot templates is 9.0% at a tip radius of 0.005in.
The difference in the results between fineroot and finest templates is about 4.0% at 0.005in tip
radius. As expected, the agreement is better for larger values of tip radius.

Table 2.13 shows the results for the stresses over a much smaller range. The tip radius is
varied from 0.04in to 0.045in in steps of 0.0005in. Even for such a small change in tip radius,
the change in stresses is monotonously decreasing.

The time required to run the analysis for each case with the medium, fineroot and finest
templates was about 20mins, 1hr and 4hrs respectively on an Intel Pentium4, 1700MHz cpu.
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Figure 2.2: Graph of Max ppl normal stresses against tip radii (0.005in− 0.085in) for medium,
fineroot and finest templates

Table 2.13: Max ppl normal stress values for different radii

Tip radius Stress with
medium.tpl

0.04 1.259E+05
0.0405 1.255E+05
0.041 1.250E+05
0.0415 1.245E+05
0.042 1.241E+05
0.0425 1.236E+05
0.043 1.232E+05
0.0435 1.228E+05
0.044 1.223E+05
0.0445 1.219E+05
0.045 1.215E+05
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Table 2.14: Max ppl normal stress values for different tooth thicknesses

Tooth thickness Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

0.32 1.215E5 1.266E5 1.248E5
0.315 1.231E5 1.263E5 1.261E5
0.31 1.248E5 1.290E5 1.270E5
0.305 1.273E5 1.313E5 1.289E5
0.3 1.294E5 1.330E5 1.312E5
0.295 1.313E5 1.349E5 1.340E5
0.29 1.342E5 1.375E5 1.364E5
0.285 1.366E5 1.396E5 1.381E5
0.28 1.385E5 1.412E5 1.394E5

2.2.2 Effect of Tooth thickness on the max ppl normal stress

In order to study the effect of tooth thickness on the stress values we run the analysis for different
tooth thicknesses for all the mesh templates. We vary the thickness from 0.32in to 0.28in in
steps of 0.005in. The tip radius for all the tooth thickness values is 0.045in. The stress values
hence obtained are shown in Table 2.14. Figure 2.3 shows a plot of the Max ppl normal stress
against tooth thickness. It can be concluded from the graph that as you go on decreasing the
thickness, the stress increases. From the graph it can be seen that the difference in the results
for the medium and fineroot templates is about 4.0%. The difference between the fineroot and
finest templates is about 1.0%.
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Figure 2.3: Graph of Max ppl normal stresses against tooth thickness (0.32in-0.28in) for medium,
fineroot and finest templates



16 Convergence study

Table 2.15: Max ppl normal stress values for different number of elements along the face width

Nfaceelems Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

2 1.207E5 1.239E5 1.242E5
4 1.215E5 1.266E5 1.248E5
6 1.212E5 1.243E5 -
8 1.211E5 1.243E5 -
10 1.211E5 1.242E5 -

2.2.3 Effect of number of elements in the face direction on the max
ppl normal stress

In order to study the effect of number of elements along the face width on the stress values we run
the analysis for different NFACEELEMS for all the mesh templates. We vary the NFACEELEMS
parameter from 2 to 10 in steps of 2. The tip radius and the tooth thickness values for all the
test cases are 0.045in and 0.32in respectively. The stress values hence obtained are shown in
Table 2.15. Figure 2.4 shows a plot of the Max ppl normal stress against the no. of face elements
for the medium and fineroot templates. Results for higher elements with the finest mesh could
not be obtained due to CPU limitations. From the graph it can be seen that the difference in
the results for the medium and fineroot templates is about 2.5%. As expected the stress values
converge for higher number of elements.
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Table 2.16: Max ppl normal stress values for different Displ. order

Displ.order Stress with
medium.tpl

Stress with
fineroot.tpl

Stress with
finest.tpl

3 1.215E5 1.266E5 1.248E5
4 1.211E5 1.243E5 -
5 1.211E5 1.242E5 -
6 1.211E5 1.242E5 -

2.2.4 Effect of displacement order on the max ppl normal stress

In order to study the effect of the displacement order on the stress values we run the analysis
for different DISPLORDER for all the mesh templates. With 4 elements along the face width,
we vary the DISPLORDER parameter from 3 to 6 in steps of 1. The tip radius and the tooth
thickness values for all the test cases are 0.045in and 0.32in respectively. The stress values
hence obtained are shown in Table 2.16. Figure 2.5 shows a plot of the Max ppl normal stress
against the displ. order for the medium and fineroot templates. Results for higher order with
the finest mesh could not be obtained due to CPU limitations. From the graph it can be seen
that the difference in the results for the medium and fineroot templates is about 4.0%. The
results converge for higher order as expected.
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2.3 Conclusions

The stress values have been shown to converge with increasing refinement of the finite element
mesh. For typical tip radius values, this convergence study shows that we have a discretization
error of about 4.0% in the coarsest mesh (medium.tpl) and less than 1.0% in the intermediate
mesh (fineroot.tpl). We feel that the error in the finest mesh (finest.tpl) is much less than 1.0%.
The stress values converge with higher elements along the face direction and also with a higher
order fourier series. The error in the results for less number of face elements and less displ. order
is about 4.0% for the medium template and less than 1.0% for the fineroot template.



Chapter 3

Fatigue theory and life prediction
using the hypoid gear program

3.1 Introduction

Most engineering design projects involve machine parts subjected to fluctuating or cyclic loads.
Such loading induces fluctuating or cyclic stresses that often result in failure by fatigue. Ma-
terials fracturing under repeated loadings are found to exhibit no gross deformation and give
the appearance of having suddenly snapped. It is difficult to detect the progressive changes in
the material properties that occur during fatigue stressing and failure may therefore occur with
little or no warning. Also, periods of rest, with the fatigue stress removed, do not lead to any
measurable healing or recovery from the effects of prior cyclic stressing. Thus the damage done
during the fatigue process is cumulative and generally unrecoverable.

Fatigue is by far the most common cause of failure of load carrying metallic parts operating
at or close to room temperature.

3.2 Fatigue characteristics

Fatigue may be characterised as a progressive failure phenomenon that proceeds by the initiation
and propagation of cracks to an unstable size. Fatigue crack nuclei, from which cracks grow and
often propagate to failure, are thought to be formed through the movements of dislocations
that produce fine slip bands at the crystal surfaces. Under cyclic loading these fine slip bands
ultimately turn out to be the regions in which fatigue cracks are initiated. Further, the fatigue
slip bands gives rise to intrusions as a result of reversed slip in adjacent slip planes caused by
load reversal. Once formed, these intrusions grow in depth by reverse slip process, and their
growth may well constitute a major portion of the fatigue of the metal. Crack propagation and
hence fatigue are affected by various factors such as material composition, grain size and grain
direction, heat treatment, welding, geometrical discontinuities, surface conditions, size, residual
surface stresses, corrosion, fretting, operating temperature, operating speed, etc.

A term called fatigue limit(endurance limit) is very commonly used while studying fatigue
failure. It is the stress level below which an infinite number of cycles can be sustained without
failure. To characterize the failure response of components in the finite life range, the term
fatigue strength at a specified life, SN is used. The term fatigue strength identifies the stress
level at which failure will occur at specified life.
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Figure 3.1: Completely reversed cyclic stress plot

3.3 Low and High cycle fatigue

It is observed that the fatigue process embraces two domains of cyclic stressing or straining that
are significantly different in character, and in each of which failure is probably produced by
different physical mechanisms. One domain of cyclic loading is that for which significant plastic
strains occur during each cycle. This domain is associated with high loads and short lives, or low
number of cycles to produce fatigue failure, and is commonly referred to as low cycle fatigue.

The other domain of cyclic loading is that for which the strain cycles are largely confined to
the elastic range. This domain is associated with lower loads and long lives, or high number of
cycles to produce fatigue failure, and is commonly referred to as high cycle fatigue. Low-cycle
fatigue is typically associated with cycle lives up to about 104 or 105 cycles, and high cycle
fatigue for lives greater than about 104 or 105 cycles. In most gearing applications fatigue failure
is associated with high cycle fatigue. Hence we address the hypoid fatigue failure problem based
on the theory related to the high cycle fatigue.

3.4 Fatigue loading

As discussed earlier fatigue failure is caused in materials or components when subjected to cyclic
or alternating stress. A simple example of a fatigue stress spectrum to which an element may be
subjected could be a zero-mean sinusoidal stress-time pattern of constant amplitude and fixed
frequency, applied for a specified number of cycles. Such a stress-time pattern, often referred to
as a completely reversed cyclic stress is shown in Figure 3.1.

Using the figure we define the following terms and symbols so as to calculate the fatigue
strength or fatigue life for a hypoid gear set.

σmax = Maximum Stress in the cycle (3.1)
σmin = Minimum Stress in the cycle (3.2)

σm = Mean Stress

=
σmax + σmin

2
(3.3)

σa = Alternating Stress amplitude

=
σmax − σmin

2
(3.4)
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Figure 3.3: Released tension, R=0, stress-time pattern

∆σ = Range of Stress
= σmax − σmin (3.5)

R = Stress Ratio
=

σmin

σmax
(3.6)

A = Amplitude Ratio

=
σa

σm
(3.7)

Some examples of other Stress-time patterns are shown in Figures 3.2 through 3.7.
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Figure 3.5: Quasi-random stress-time pattern
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Figure 3.6: Completely reversed ramp stress-time pattern

Figure 3.7: Stress-time pattern with distorted peaks
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3.5 Example of a laboratory fatigue testing

Designing machine parts or structures that are subjected to fatigue loading is usually based on
the results of laboratory fatigue tests using specimens of the material of interest. An example of
a laboratory fatigue test called the rotating bending machine of the constant bending moment
type is shown in Figure 3.8.

Figure 3.8: Schematic of the rotating-bending fatigue testing machine of the constant bending
moment type

ω t

S
tr

es
s 

at
 A

Figure 3.9: Stress-time pattern for point A at the surface of the critical section
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With this type of device the region of the rotating beam between the inboard bearings is
subjected to a constant bending moment all along its length. While under the influence of this
constant moment, the specimen is rotated with the drive spindles about its longitudinal axis.
Any point on the surface is thereby subjected to a completely reversed stress-time pattern, as can
be deduced by following the stress history of a point as it rotates from maximum compression
at the top position down through zero stress when at the side through maximum tension at the
bottom, and then back through zero to maximum compression at the top again. The stress-time
pattern for a point on the surface of the critical section is shown in Figure 3.9.

3.6 Gear fatigue failure

Gears may fail by wear and scuffing but the main causes of failure are bending fatigue leading to
breakage at the root of the tooth and surface contact fatigue leading to pitting. Fatigue failure
in gears can be broadly classified in to two types:

• Those arising from a tensile fatigue failure of the material at the root of a gear tooth i.e.
away from the area of contact between intermeshing teeth.

• Those arising from compressive stresses on the working surface of the gear tooth, where
it is in contact with the intermeshing gear.

Tensile fatigue failure occurs in materials subjected to fluctuating stresses where the continu-
ously repeated stress is much lower than the static tensile strength of the material. This type of
high cycle fatigue failure generally depends upon the number of stress cycles rather than on the
total time under load and does not occur below a certain stress, called the fatigue and endurance
limit. In a homogeneous material tensile fatigue crack always starts at and propagates from the
point of maximum stress concentration. Under normal operation and with correct design the
point of maximum tensile stress concentration on a gear is at the root of the tooth on the loaded
side. The crack progresses through the tooth to the root on the opposite side. During this
crack propagation the tooth can bend over and shed the load on to the next tooth which also
ultimately fails.

Surface fatigue failure is brought about by cumulative damage to the gear material caused by
repeated application of contact stresses. Surface contact fatigue does not usually lead to catas-
trophic breakage (as in the case of a tensile fatigue failure) but rather to progressive deterioration
of the surface by pitting or spalling.
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3.7 Running the Hypoid facemilled program for fatigue
failure

3.7.1 The example file

Load the file fatigue.ses from the FATIGUE directory located in the SAMPLES directory.
The data for the fatigue test model is similar to the data we used for convergence study. We

run the analysis for one mesh cycle.

3.7.2 Locating the point of maximum stress

The SEARCHSTRESS menu is used to locate the point of maximum stress on the profile,
facewidth and the depth of a tooth. A plot of maximum principal stress against time for Pinion
tooth no.1 is shown in Figure 3.10. The legend on the top right corner of the figure shows the
location along the profile(s), width(t) and the depth(dpth) of the maximum stress point. The
search stress menu used to plot this graph is shown in Table 3.1. The depth on the surface of
the tooth is 0.00. As can be seen from the stress results the maximum stress occurs at profile,
s = 7.56. The involute profile as shown in Figure 3.11 goes from s = 0 to s = 48. There are 8
elements along the profile(element nos.3 through 10). So each element corresponds to a profile
distance of 6 units. From figure 3.11 and figure 3.12 the point of maximum stress lies between
the profile, s = 6 and s = 12. To find the corresponding XI(ξ) co-ordinate we use the following:

ξ − (−1)
2

=
7.56− 12
6− 12

ξ = 0.48 (3.8)

The ETA(η) co-ordinate on the surface is 1.00.
Since there are 4 finite elements along the width and the point of maximum stress lies close

to 0.00(t = −0.08) we are interested in element numbers 40 and 76. The element orientation is
shown in Figure 3.12. Refer to the appendix of the Hypoid Facemilled Users manual for further
details. Note that ZETA(ζ) is along the facewidth direction. So as to locate the exact ζ value
we apply FEPROBES close to ζ = +1 for element no.40 and ζ = −1 for element no.76. The
FE probe menu for one of the probes is shown in table 3.2. Analysing the FE probe data the
co-ordinates of the maximum stress point is found to be (ξ, η, ζ) = (0.48, 1.00, 0.66) on element
no.40. For this point the plot of maximum and minimum principal normal stress against time is
shown in Figure 3.13.
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Figure 3.10: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu



30 Fatigue theory and life prediction using the hypoid gear program

Figure 3.11: The MEDIUM.TPL template file.
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Figure 3.12: Orientation of ξ, η and ζ on the tooth
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Table 3.1: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 3.2: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 40
XI 0.48
ETA 1.00
ZETA 0.66
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT
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Figure 3.13: Plot of maximum and minimum principal normal stress for a point on the pinion
tooth against time
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3.7.3 Results

The maximum principal and the minimum principal normal stress plot obtained from the
FE probe data is shown in Figure 3.13. The maximum principal normal stress (σmax) =
1.21574×105psi and the minimum principal normal stress (σmin) = −1.655067×104psi. Hence,
Alternating stress, σa = 6.90623× 104psi and the Mean stress, σm = 5.25116× 104psi.
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Figure 3.14: An example of an S-N curve for predicting fatigue life

3.8 Calculating the fatigue life

The stress life, S-N, method was the first approach used in an attempt to understand and quantify
fatigue life. The S-N approach is still widely used in design applications where the applied stress
is primarily within the elastic range of the material and the resultant lives (cycles to failures) are
long, such as power transmission shafts. The S-N diagram is a plot of alternating stress, S, versus
cycles to failure, N. One of the major drawbacks of the stress-life approach is that it ignores the
true stress-strain behavior and treats all strains as elastic. This may be significant since the
initiation of fatigue cracks is caused by plastic deformation. The simplifying assumptions of the
S-N approach are valid only if the plastic strains are small. At long lives most steels have only
a small component of cyclic strain which is plastic and the S-N approach is valid. An example
of an S-N plot is shown in Figure 3.14.

The magnitude of mean stress has an important influence on the fatigue behavior of a spec-
imen or a machine part. Most service applications involve nonzero mean cyclic stresses. The
present case under consideration also is an example of a nonzero mean cyclic stress. The influ-
ence of non-zero mean stress on failure can be estimated by empirical relationships (Figure 3.15)
that relate the failure at a given life under non-zero mean conditions to failure at the same life
under zero mean cyclic stresses.
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Figure 3.15: Various empirical relationships for estimating the influence of nonzero-mean stress
on fatigue failure

3.8.1 Goodman’s Linear relationship

Let,

σa = Alternating stress amplitude
σN = Fatigue strength
σm = Mean stress
σu = Ultimate strength

σyp = Yield point stress

Goodman’s linear relationship states that fatigue failure occurs when

σa

σN
+

σm

σu
≥ 1 (3.9)

For G43400 steel 1 with tensile strength 180kpsi and fatigue limit 120kpsi, using the results
for σa and σm, the Goodman linear relationship gives

σa

σN
+

σm

σu
= 0.8672

1See ’Mechanical Engineering Design’, Fourth Edition, Shigley and Mitchell, pages 276-277
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3.8.2 Gerber’s parabolic relationship

Gerber’s parabolic relationship states that fatigue failure occurs when

σa

σN
+ (

σm

σu
)2 ≥ 1 (3.10)

For G43400 steel with tensile strength 180kpsi and fatigue limit 120kpsi, the Gerber’s
parabolic relationship gives

σa

σN
+ (

σm

σu
)2 = 0.66

3.8.3 Soderberg’s linear relationship

Soderberg’s linear relationship states that fatigue failure occurs when

σa

σN
+

σm

σyp

≥ 1 (3.11)

For G43400 steel with yield strength 160kpsi and fatigue limit 120kpsi, the Soderberg’s linear
relationship gives

σa

σN
+

σm

σyp

= 0.9031

3.8.4 Elliptic relationship

Elliptic relationship states that fatigue failure occurs when

(
σa

σN
)2 + (

σm

σu
)2 ≥ 1 (3.12)

For G43400 steel with tensile strength 140kpsi and fatigue limit 71kpsi, the Elliptic relation-
ship gives

(
σa

σN
)2 + (

σm

σu
)2 = 0.4153

The above theories can be used to find the alternating stress at which fatigue failure will
occur. For instance, according to the Goodman’s linear relationship, for a steel with tensile
strength 180kpsi, the fatigue stress can be calculated by substituting σa = 6.90623 × 104psi,
σm = 5.25116 × 104psi and σu = 180 × 103psi in to Goodman linear relationship giving σN =
97.5081× 103psi. Using an S-N plot for steel shown in Figure 3.16 2, the corresponding fatigue
life is 4.4× 105cycles. Note that the S-N plot used in the figure is not a standard curve for gear
materials. It is used to demonstrate the ability of the hypoid facemilled program in calculating
the fatigue life.

2See ’Fundamentals of metal fatigue analysis’, Prentice Hall, Bannantine, Comer, Handrock, pages 1-5
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Figure 3.16: Example of an S-N plot for wrought steel
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3.9 Effect of rigid internal diameter on fatigue life

In order to study the effect of the boundary condition on fatigue life we make the inner diameter of
the pinion as rigid. Load the file fatigueinnerdiarigid.ses located in the FATIGUE directory.
The ISRACERIGID item in the COMMON menu data for the pinion is turned on to make the
inner diameter of the pinion as rigid.

3.9.1 Locating the point of maximum stress

The SEARCHSTRESS menu is used to locate the point of maximum stress on the profile,
facewidth and the depth of a tooth. A plot of maximum principal stress against time for Pinion
tooth no.1 is shown in Figure 3.17. The legend on the top right corner of the figure shows the
profile(s), width(t) and the depth(dpth) data of the maximum stress point. The search stress
menu used to plot this graph is shown in Table 3.3. The depth on the surface of the tooth is 0.00.
As can be seen from the stress results the maximum stress occurs at profile, s = 7.70. Thus the
point of maximum stress lies between the profile, s = 6 and s = 12. To find the corresponding
XI(ξ) co-ordinate we use the following:

ξ − (−1)
2

=
7.70− 12
6− 12

ξ = 0.433 (3.13)

The ETA(η) co-ordinate on the surface is 1.00.
Since there are 4 finite elements along the width and the point of maximum stress lies close

to 0.00(t = −0.08) we are interested in element numbers 40 and 76. Refer to the appendix of the
Hypoid Facemilled Users manual for further details. So as to locate the exact ζ value we apply
FEPROBES close to ζ = +1 for element no.40 and ζ = −1 for element no.76. The FE probe
menu for one of the probes is shown in table 3.4. Analysing the FE probe data the co-ordinates
of the maximum stress point is found to be (ξ, η, ζ) = (0.433, 1.00, 0.68) on element no.40. For
this point the plot of maximum and minimum principal normal stress against time is shown in
Figure 3.18.
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Figure 3.17: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu
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Table 3.3: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 3.4: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 40
XI 0.433
ETA 1.00
ZETA 0.68
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT
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Figure 3.18: Plot of maximum and minimum principal stresses against time for pinion tooth for
the case with rigid pinion inner diameter
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3.9.2 Results

The maximum principal and the minimum principal normal stress plot obtained from the FE
probe data is shown in Figure 3.18. The maximum principal normal stress (σmax) = 1.24137×
105psi and the minimum principal normal stress (σmin) = −5.7812×103psi. Hence, Alternating
stress, σa = 6.4959× 104psi and the Mean stress, σm = 5.9177× 104psi.

According to the Goodman’s linear relationship, for a steel with tensile strength 180kpsi, the
fatigue stress using above data is 96.774kpsi. Using an S-N plot for steel shown in Figure 3.16,
the corresponding fatigue life is 4.75 × 105cycles. Note that the S-N plot used in the figure is
not a standard curve for gear materials. It is used to demonstrate the ability of the hypoid
facemilled program in calculating the fatigue life.

3.10 Fatigue life for a thin flexible rim model

Load the file fatiguethinrim.ses located in the FATIGUE directory. The ISRACERIGID item
is turned off for this example. The axial order and the circorder items are 2 and 4 respectively. In
order to model the thin rim the BASESURFACETYPE is CONE with BASECONEANGLE(deg)
as 13.00.

3.10.1 Locating the point of maximum stress

A plot of maximum principal stress against time for Pinion tooth no.1 is shown in Figure 3.19.
Table 3.5 shows the searchstress menu to obtain this plot. Analysing the FE probe data the
co-ordinates of the maximum stress point is found to be (ξ, η, ζ) = (0.386, 1.00, 0.70) on element
no.40. For this point the plot of maximum and minimum principal normal stress against time is
shown in Figure 3.20. An example of a FEPROBE menu is shown in Table 3.6.
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Figure 3.19: Plot of maximum principal normal stress against time for pinion tooth no.1 using
the SEARCHSTRESS menu
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Table 3.5: Searchstress data

Item Description
COMPONENT MAXPPLSTRESS
XAXIS TIME
BEGINSTEP 1
ENDSTEP 11
BODY PINION
SURFACE FILLET1
TOOTHBEGIN 1
TOOTHEND 1
SEPTEETH TRUE
SPROFBEGIN 6.00
SPROFEND 12.00
NUMSPROF 51
TFACEBEGIN -0.5
TFACEEND 0.5
NUMTFACE 51
DEPTHBEGIN 0.00
DEPTHEND 0.00
NUMDEPTH 1
DISTMIN 0.05
OUTPUTTOFILE TRUE
FILENAME out.txt
APPEND TRUE

Table 3.6: FE probe data

Item Description
NPROBES 40
PROBE 1
BODY PINION
MESH TOOTH
ELEM 40
XI 0.386
ETA 1.00
ZETA 0.70
COMPONENT MAXPPLNORMAL
FILENAME PROBES.DAT



46 Fatigue theory and life prediction using the hypoid gear program

0 0.05 0.1 0.15 0.2 0.25
−2

0

2

4

6

8

10

12

14
x 10

4

Time(secs)

M
ax

/M
in

 p
pl

 n
or

m
al

 s
tr

es
s

Max ppl normal stress
Min ppl normal stress

Figure 3.20: Plot of maximum and minimum principal stresses against time for pinion tooth for
the case with thin flexible pinion inner diameter
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3.10.2 Results

The maximum principal and the minimum principal normal stress plot obtained from the FE
probe data is shown in Figure 3.20. The maximum principal normal stress (σmax) = 1.23168×
105psi and the minimum principal normal stress (σmin) = −9.869× 103psi. Hence, Alternating
stress, σa = 6.6518× 104psi and the Mean stress, σm = 5.6649× 104psi.

According to the Goodman’s linear relationship, for a steel with tensile strength 180kpsi, the
fatigue stress using above data is 97.066kpsi. The fatigue life for this stress is 4.6× 105cycles.

3.11 Cumulative damage

The S-N curves discussed in previous section are developed for constant stress amplitude op-
eration. But, in virtually every engineering application where fatigue is an important failure
mode, the alternating stress amplitude may be expected to vary or change in some way during
the service life. Hence the usage of S-N curves in such cases is inapplicable. Therefore theories
based on cumulative damage are used while predicting fatigue failure.

The fatigue damage produced at any given cyclic stress amplitude will be related to the total
number of cycles of operation at that stress amplitude and also related to the total number
of cycles that would be required to produce failure of an undamaged specimen at that stress
amplitude. It is further postulated that the damage incurred is permanent and operation at
several different stress amplitudes in sequence will result in an accumulation of total damage
equal to the sum of the damage increments accrued at each individual stress level. When the
total accumulated damage reaches a critical value, fatigue failure occurs. Many different theories
based on this concept of cumulative damage have been proposed. We discuss here two theories
very commonly used for the purposes of assessing fatigue damage.

3.11.1 Linear damage theory

The linear damage theory is also referred as the Plamgren-Miner hypothesis or the linear damge
rule. As discussed earlier the S-N curve(Figure 3.21) at a constant stress amplitude S1 will
produce complete damage, or failure, in N1 cycles. Operation at stress amplitude S1 for a
number of cycles n1 smaller than N1 will produce a smaller fraction of damage, D1. D1 is
usually termed as the damage fraction. Operation over a spectrum of different stress levels
results in a damage fraction Di for each of the different stress levels Si in the spectrum. When
this damage fractions sum to unity, failure is predicted, that is,

Failure is predicted to occur if:

D1 + D2 + ... + Di−1 + Di ≥ 1 (3.14)

The Palmgren-Miner hypothesis asserts that the damage fraction at any stress level Si is
linearly proportional to the ratio of number of cycles of operation to the total number of cycles
that would produce failure at that stress level, that is

Di =
ni

Ni
(3.15)

Thus we can also say that failure is predicted to occur if:

n1

N1
+

n2

N2
+ ... +

ni−1

Ni−1
+

ni

Ni
≥ 1 (3.16)

or failure is predicted to occur if:

i∑

j=1

nj

Nj
≥ 1 (3.17)
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Figure 3.21: S-N plot illustrating the linear damage theory
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Figure 3.22: S-N curve approximation proposed by Gatt

The Palmgren-Miner hypothesis is widely used because of its simplicity and the experimental
fact that the other much more complex cumulative damage theories do not always yield a signif-
icant improvement in failure prediction reliability. The most significant drawback of the theory
though is that no influence of the order of application of various stress levels is recognized, and
damage is assumed to accumulate at the same rate at a given stress level without regard to past
history. Experimental data suggest that the order in which various stress levels are applied does
have a significant influence and also that the damage rate at a given stress level is a function of
the prior cyclic stress history.

3.11.2 Gatts Cumulative damage theory

Gatts postulated that the fatigue strength and the the fatigue limit change continuously with
the application of stress cycles, and that the change is proportional to a function of the stress
amplitude.

The S-N curve3 according to the Gatt’s theory is given as:

kN =
1

S − Se0

− 1
S(1− C)

(3.18)

where,

3See Failure of materials in mechanical design by J.A. Collins.
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C, k = Material constant and proportionality constant
Se0 = fatigue limit when N = 0
Sq = Instantaneous value of strength
Se = Fatigue limit, a function of cyclic stress history, not a constant

= CSq

N = Number of cycles of stress applied
S = Amplitude of applied cyclic stress

Figure 3.22 shows the S-N curve based on the Gatt’s cumulative damage theory.
Knowing the material properties and calculating the stress amplitude from the FE probe data

it is possible to calculate the fatigue life for a hypoid gear pair based on the Gatts cumulative
damage theory.



3.12 Fatigue life based on duty cycle for a gear set 51

3.12 Fatigue life based on duty cycle for a gear set

We assume the gear set shown in example file fatigue.ses to be running at 90% of the total
torque.

Load the file fatigueload1.ses located in the FATIGUE directory. We now run the gear set
at about 110% of the total load(Torque = 3194.07lbf.in). For this load the maximum sress plot
from the search stress menu is shown in Figure 3.23. The maximum stress point using the FE
probe data is found to be (0.50,1.00,0.62). For this point the maximum and minimum principal
normal stress plot is shown in Figure 3.24. The corresponding fatigue life hence obtained is
6.0× 104cycles.

Load the file fatigueload2.ses located in the FATIGUE directory. We now run the gear
set at 100% load(Torque = 2903.7lbf.in). For the point (0.50,1.00,0.62) on element no.40 the
maximum and minimum principal normal stress plot is shown in Figure 3.25. The corresponding
fatigue life hence obtained is 1.9× 105cycles.

Load the file fatigueload3.ses located in the FATIGUE directory. We now run the gear
set at Torque = 1500lbf.in. For the point (0.50,1.00,0.62) on element no.40 the maximum and
minimum principal normal stress plot is shown in Figure 3.26. The corresponding fatigue life
hence obtained is infinite.

Load the file fatigueload4.ses located in the FATIGUE directory. We now run the gear set
at Torque = 2613.33lbf.in. For the point (0.50,1.00,0.62) on element no.40 the maximum and
minimum principal normal stress plot is shown in Figure 3.27. The corresponding fatigue life
hence obtained is 4.5× 105cycles.

The load and the corresponding fatigue life is summarised in Table 3.7.

Table 3.7: Fatigue life for a duty cycle

Torque(lbf-in) Fatigue
life(cycles)

Number of
cycles (%)

1500 ∞ 70%
2613.33 4.5e5 20%
2903.7 1.9e5 9%
3194.07 6.0e4 1%
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Figure 3.23: Maximum principal normal stress plot against time for pinion tooth no.1 for a
output torque of 3194.07 lbf.in
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Figure 3.24: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 3194.07 lbf.in
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Figure 3.25: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 2903.7 lbf.in
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Figure 3.26: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 1500 lbf.in
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Figure 3.27: Maximum and minimum principal normal stress plot against time for pinion tooth
for output torque of 2613.33 lbf.in
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3.13 Calculating life based on cumulative damage theory

From the Linear damage theory failure occurs when:

n1

N1
+

n2

N2
+ ... +

ni−1

Ni−1
+

ni

Ni
= 1 (3.19)

Substituting the values from Table 3.7 in the above we get:

0.7n

∞ +
0.2n

4.5× 105
+

0.09n

1.9× 105
+

0.01n

6.0× 104
= 1 (3.20)

Thus, the life cycle for the gear set is 9.21832× 105cycles.

3.14 Summary

We have shown how the Hypoid facemilled program can be employed to calculate the fatigue life
for gear bodies. As can be seen from the Table 3.7 as the load increases the fatigue life is found
to decrease as expected.
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