
Acoustic Field inside an Enclosed Room with a Point Source

1 Introduction

The main objectives of this Demo Model are to

• Demonstrate the ability of Coustyx to model an enclosed room with a point source using
Coustyx Indirect model and solve for the acoustic field distribution inside the room.

• Derive analytical solutions using the modal theory of room acoustics.

• Validate Coustyx software by comparing the results from Coustyx to the analytical solutions
in the presence of acoustic sources.

2 Model description

We model the room to be a cube of size 1 m× 1m× 1m. The fluid medium in and around the cube
is air with mean density ρo = 1.21 kg/m3 and sound speed c = 343− i ∗ 10m/s. A complex speed of
sound introduces damping in the system. The imaginary part of the speed of sound should always
be negative for a decaying sound wave. The wavenumber at a frequency ω is given as k = omega/c.
A monopole source of unit volume velocity is introduced at (0.1,0.2,0.3) to simulate the point source
in the room. All the faces of the cube are assumed to be rigid. The BE mesh of the cube is shown
in Figure 1.
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(a) Acoustic problem. (b) Boundary element mesh

Figure 1: Cubic room with a point source. Note S–source, O–observation point

3 Boundary conditions

In the Coustyx model, the rigid wall condition is simulated by applying the boundary conditions
on the cube faces as “Uniform Normal Velocity of Continuous type” with zero amplitude. That is,
v+

n = v−n = vn = 0, where + and − correspond to the sides of the mesh in the same and opposite
directions of the mesh normal.
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4 Analytical solution

We first compute modes for the room (of size Lx×Ly×Lz) with the rigid walls boundary condition.
These modes are then used in modal expansion to evaluate field point pressure at any point inside
the room.

4.1 Eigenvalue problem

Table 1: Natural frequencies of a rigid cube

Frequency (Hz) nx ny nz

0 0 0 0
171.5 0 0 1
171.5 0 1 0
171.5 1 0 0
242.5 0 1 1
242.5 1 0 1
242.5 1 1 0
297.1 1 1 1
343 0 0 2
343 0 2 0
343 2 0 0

383.5 0 1 2
383.5 0 2 1
383.5 1 0 2
383.5 1 2 0
383.5 2 0 1
383.5 2 1 0
420.1 1 1 2
420.1 1 2 1
420.1 2 1 1
485.1 0 2 2
485.1 2 0 2
485.1 2 2 0

The eigen function Ψ(x, n) satisfies the Helmholtz equation at any point inside the cube [1]
[∇2 + k2

n

]
Ψ(x, n) = 0 (1)

where k2
n is the eigenvalue.

The eigen function should also satisfy the rigid boundary conditions on the faces of the cube

∂Ψ(x, n)
∂n̂

= 0

where n̂ is the surface normal.
To solve the eigenvalue problem, we assume that the eigen function can be factored into a form
Ψ(x, n) = X(x)Y (y)Z(z). The Helmholtz equation is reduced to

1
X(x)

∂2X(x)
∂x2

+
1

Y (y)
∂2Y (y)

∂y2
+

1
Z(z)

∂2Z(z)
∂z2

+ k2
n = 0

Applying separation of variables, the independent equation in terms of the variable x is written as

∂2X(x)
∂x2

+ k2
xX(x) = 0

The function X(x) also satisfies the rigid boundary conditions at x = 0 and x = Lx, that is,

∂X

∂x
= 0



http://www.ansol.com 3

Solving for X(x) in the above equations, we obtain

X(x) = cos (kxx)
kx = nxπ

Lx
, nx = 0, 1, 2, . . .

(2)

Applying similar conditions to Y (y) and Z(z), the eigen function is derived.

Ψ(x, nx, ny, nz) = cos
(

nxπ

Lx
x

)
cos

(
nyπ

Ly
y

)
cos

(
nzπ

Lz
z

)
(3)

The eigenvalue k2
n = k2

x + k2
y + k2

z is

k2
n =

(
nxπ

Lx

)2

+
(

nyπ

Ly

)2

+
(

nzπ

Lz

)2

(4)

where kn = ω/c = 2πf/c, f is the frequency in Hz. Table 4.1 shows the list of eigenvalues lying
between 0–500 Hz.

4.2 Modal expansion

The acoustic field pressure p at any point x (inside the cube) due to the presence of a point source
at xs satisfies the Helmholtz equation

∇2p + k2p = $δ(x− xs) (5)

where the source strength $ = ikρcβo, βo is the volume velocity; δ(x − xs) is the Dirac delta
function.
The modal eigenfunctions derived above form a complete set. Hence, the acoustic solution p inside
the room can be approximated as a linear combination of these eigen functions.

p =
∑

n

AnΨ(x, n) (6)

An is the mode participation coefficient.
We compute the mode participation coefficient An by substituting Equation 6 into Equation 5, that
is, ∑

n

An

[
k2 − k2

n

]
Ψ(x, n) = $δ(x− xs) (7)

Multiply Equation 7 with Ψ(x, n′) and integrate over the entire volume. Using the orthogonality of
eigen functions, and the properties of Dirac delta function, the coefficient An is derived.

An = qn
$

V [k2 − k2
n]

cos
(

nxπ

Lx
xs

)
cos

(
nyπ

Ly
ys

)
cos

(
nzπ

Lz
zs

)
(8)

where V = LxLyLz is the volume of the cube; qn = qx(nx)qy(ny)qz(nz), qx(nx) = 1 for nx = 0, and
qx(nx) = 2 for nx 6= 0, similarly for qy and qz.

5 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
Indirect model. An Analysis Sequence stores all the parameters required to carry out an analysis,
such as frequency of analysis, solution method to be used, etc. In the demo model, the analysis is
performed for a frequency range of 50–500 Hz with a frequency resolution of 10 Hz using the Fast
Multipole Method (FMM) by running “Run Validation - FMM”. Coustyx analysis results, along with
the analytical solutions, are written to the output file “validation results fmm.txt”. The results can
be plotted using the matlab file “PlotResults.m”.
Coustyx Indirect model uses the Indirect BE method to solve for the surface potentials µ and σ.
These are, in turn, used to compute field pressures at specified points. Field point pressures at an
interior observation point (0.7,0.7,0.7) are computed from both Coustyx and analytical methods and
are compared in Figure 2. The comparisons show very good agreement between these two solutions.
Figure 2 also shows the resonance peaks at the natural frequencies of the rigid cube (Table 4.1).
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Figure 2: Field pressure comparisons at (0.7,0.7,0.7) inside a rigid cube with a monopole source
from Coustyx and analytical methods. Note that P is the field point pressure and $ = ikρocβo,
where βo is the volume velocity of the monopole source.
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