
Exterior Piston Baffled in a Sphere

1 Introduction

The main objectives of this Demo Model are

• Demonstrate the ability of Coustyx to model an exterior piston baffled in a sphere using
Indirect model and solve for the radiated pressure distribution.

• Derive analytical solution for this acoustic problem.

• Validate Coustyx software by comparing the results from Coustyx to the analytical solutions.

2 Model description

We model a sphere of radius a = 1 m. The fluid medium surrounding the sphere is air with sound
speed c = 343 m/s and mean density ρo = 1.21 kg/m3. The characteristic impedance of air Zo =
ρoc = 415.03 Rayl. The wavenumber at a frequency ω is given as k = ω/c. A uniform radial velocity
vr = 1m/s is applied on the sphere from θ = 0 to θ = 54o to simulate an exterior piston baffled in
the sphere. The BE mesh of the spherical baffle is shown in Figure 1.

(a) Spherical baffle (b) Boundary element mesh

Figure 1: Acoustic problem description.

The BE mesh has quadratic coordinate connectivity as well as quadratic variable node connectivity.
Coustyx indirect BE method is used to solve the exterior and interior problems simultaneously.

3 Boundary Conditions

The boundary condition applied on the baffled part of the sphere, that is between θ = 0 − 54o, is
an “Uniform Normal Velocity of Continuous type” that is, v+

n = v−n = vn, where vn = −vr is the
normal velocity on the surface of the sphere, + and − correspond to the sides of the mesh in the
same and opposite directions of the mesh normal. The rest of the sphere is rigid, that is, vn = 0.
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4 Analytical solution

The exterior spherical baffle with a uniform normal velocity has analytical solutions. The analytical
solution to the Helmholtz equation can be expressed as a series of spherical harmonics

p(r, θ, φ) =
N∑

l=0

AlPl(cos θ) cos(mφ)h1
l (kr) (1)

where Pl is the Legendre polynomial of degree l, h1
l (kr) is the spherical Hankel function of the first

kind of order l.
The velocity boundary condition is

vn(θ, φ) =
{

u0 0 ≤ θ < θ0

0 θ0 < θ ≤ π
(2)

The velocity distribution can be represented as a series of spherical harmonics

vn(θ) = −vr(θ) =
N∑

l=0

ulPl(cos θ) cos(mφ)

ul = (l + 1
2 )

π∫
0

vn(θ)Pl(cos θ) sinθdθ
(3)

The recurrence formulas of Legendre polynomials are used to solve for ul,

ul = (l +
1
2
)u0

θ0∫

0

Pl(cos θ) sinθdθ =
1
2
u0 [Pl−1(cos θ0)− Pl+1(cos θ0)] (4)

where for case l = 0, we consider P−1(x) = 1.
The above expression for ul is substituted in Equation 3 to obtain series expansion for velocity on
the surface of the sphere. The coefficient Al in Equation 1 is determined by matching the radial
velocity from the assumed solution with the specified normal velocity. Thus from Equation 1

∂p

∂r
(r, θ, φ) =

N∑

l=0

AlP
m
l (cos θ) cos(mφ)

[
kl(h1

l−1(kr)− h1
l+1(kr))− kh1

l+1(kr)
(2l + 1)

]
(5)

The radial velocity on the sphere (at r = a) is related to the pressure gradient in the radial direction
as

vr(θ, φ)(ikZ0) =
∂p

∂r
(a, θ, φ) (6)

Using the orthogonal properties of Legendre polynomials we obtain,

Al =
−(ikZ0)(2l + 1)ul

klhl−1(ka)− klhl+1(ka)− khl+1(ka)
(7)

Therefore, the pressure at a field point (r, θ, φ) in the exterior domain is derived to be

p(r, θ, φ) =
N∑

l=0

[ −(ikZ0)(2l + 1)ul

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
Pl(cos θ) cos(mφ)h1

l (kr) (8)

The velocity at the point(r, θ, φ) is

−→v (r, θ, φ) = 1/(ikZ0)
−→∇p(r, θ, φ) (9)

vr(r, θ, φ) = −
N∑

l=0

[
klhl−1(kr)− klhl+1(kr)− khl+1(kr)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
ulPl(cos θ) cos(mφ) (10)

vθ(r, θ, φ) = (1/r)
N∑

l=0

[
hl(kr)ul(2l + 1)

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

] [
lPl−1(cos θ)− l cos θPl(cos θ)

sin θ

]
cos(mφ)

(11)
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vφ(r, θ, φ) = (m/r)
N∑

l=0

[
hl(kr)ul(2l+1)

klhl−1(ka)−klhl+1(ka)−khl+1(ka)

]
Pl(cos θ)

sin θ sin(mφ)

vφ = 0, for m = 0

(12)

The pressure and velocities in Cartesian coordinates can be obtained from the following transfor-
mations:

r =
√

x2 + y2 + z2

θ = arccos(z/
√

x2 + y2 + z2), 0 ≤ θ ≤ π

φ = arctan(y/x), 0 ≤ φ ≤ 2π

(13)

p(x, y, z) = p(r(x, y, z), θ(x, y, z), φ(x, y, z)) (14)

vx(x, y, z) =
x

r
vr +

xz

r
√

x2 + y2
vθ − y√

x2 + y2
vφ (15)

vy(x, y, z) =
y

r
vr +

yz

r
√

x2 + y2
vθ +

x√
x2 + y2

vφ (16)

vz(x, y, z) =
z

r
vr −

√
x2 + y2

r
vθ (17)

Acoustic intensity, I, is the time average of the rate of sound energy flow per unit area normal to
the direction of propagation of the wave. It is a vector quantity in the direction of velocity. For
time-harmonic waves, where the time dependence of pressure and velocity can be represented by
e−iωt, the intensity reduces to

I =
1
T

T∫

0

PV dt =
1
2
Re{pv∗} (18)

where * denotes the complex conjugate and Re indicates the real part.
Using the orthogonality properties of the Legendre polynomials, the analytical expression for radiated
power W by the spherical baffle is derived to be

W =
∫

S

IndS = 2πa2Re

{
N∑

l=0

iZ0hl(ka)u2
l

lhl−1(ka)− lhl+1(ka)− hl+1(ka)

}
(19)

The radiation efficiency σ is defined as

σ = W
Π

Π = Z0
1
2

∫
S

v2
ndS = πa2Z0u

2
0(1− cos θ0) (20)

where Π is the input power.
Therefore, the analytical expression for radiation efficiency is

σ =
1

2(1− cos θ0)
Re

{
N∑

l=0

ihl(ka)(Pl−1(cos θ0)− Pl+1(cos θ0))2

lhl−1(ka)− lhl+1(ka)− hl+1(ka)

}
(21)

5 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
Indirect model. An Analysis Sequence stores all the parameters required to carry out an analysis,
such as frequency of analysis, solution method to be used, etc. In this Demo Model, the analysis
is performed at a frequency f = 54.59Hz using the Fast Multipole Method (FMM) by running
“Run Validation - FMM”. Coustyx analysis results, along with the analytical solutions, are written
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to the output file “validation results fmm.txt”. The results can be plotted using the matlab file
“PlotResults.m”.
The indirect BE model solves for the surface potentials µ and σ. These are, in turn, used to compute
field pressures at the specified points. To compute analytical solutions a sum limit of N = 60 is
selected to approximate the spherical baffle boundary condition. Figure 2 shows comparisons of field
point pressures computed from both Coustyx and analytical methods. The specified field points are
located at (rf , θf , φf ), where rf = 1.5m, φf = 0 and θf = iπ/20, i = 0, ..., 20. The comparisons
show very good agreement between the solutions computed from Coustyx and analytical expressions.
The radiated power computed by Coustyx, 97.047 Watts, matches well with the analytical solution,
98.6379 Watts.
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Figure 2: Field point pressure comparisons for a spherical baffle from Coustyx and analytical meth-
ods.


