
Radiation from a Sphere with Spherical Harmonic Excitation

1 Introduction

The main objectives of this Demo Model are

• Demonstrate the ability of Coustyx to model a sphere with spherical harmonic excitation using
Indirect model and solve for the radiated power.

• Demonstrate the ability of Coustyx to define complex boundary conditions using scripts.

• Demonstrate the ability to define discontinuous boundary conditions, which can be used effec-
tively to suppress large errors due to non-uniqueness issue at cavity resonances.

• Validate Coustyx software by comparing the results from Coustyx to the analytical solutions.

2 Model description

We model a sphere of radius a = 1 m. The fluid medium surrounding the sphere is air with sound
speed c = 343 m/s and mean density ρo = 1.21 kg/m3. The characteristic impedance of air Zo =
ρoc = 415.03 Rayl. The wavenumber at a frequency ω is given as k = ω/c. The BE mesh of the
sphere is shown in Figure 1.

Figure 1: Boundary element mesh of a sphere with unit radius.

A radial velocity distribution, ṽr, represented by arbitrary spherical harmonics is applied on the
sphere,

ṽr(θ, φ) = −u0P
m
l (cos θ) cos(mφ) (1)

where Pm
l is the associated Legendre function of degree l = 4 and order m = 2, and u0 = 1 is a

scalar coefficient.

3 Boundary Conditions/Non-uniqueness Issue

Coustyx Indirect BE method is used to solve this acoustic radiation problem. The indirect BE
method solves both the exterior and interior problems simultaneously. Near the resonance frequencies
of the cavity, the exterior domain solution might contain large errors due to the non-uniqueness
issue. Discontinuous boundary conditions are applied to separate the interior resonance effects on
the exterior solution. These boundary conditions (BCs) have different values on each side of the
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boundary. The exterior surface of the sphere is applied with spherical harmonic excitation and the
interior surface with a zero velocity excitation.
The boundary condition applied on the sphere in Coustyx is of “Discontinuous” type. The side
boundary conditions are

side 1 : Uniform Normal Velocity, v+
n = 0.

side 2 : Non-Uniform Normal Velocity, spherical harmonic excitation described by a script, v−n =
−ṽr. Scripts can used to define complex boundary conditions in Coustyx.

Note that side 1 of the boundary is on the positive side (+) of the normal and side 2 is on the
negative side (–) (refer Figure 2). Since the mesh normal is in the negative radial direction, side 1
is on the interior side of the sphere and side 2 is on the exterior side.

n

side 2 side 1

+-

Figure 2: Description of indirect BE discontinuous side boundary conditions.

4 Analytical solution

The exact solution to the Helmholtz equation in the exterior domain can be assumed to be of the
form

p(r, θ, φ) = Am
l u0P

m
l (cos θ) cos(mφ)h1

l (kr) (2)

where h1
l (kr) is the spherical Hankel function of the first kind of order l and Am

l is a constant
dependent on (l, m). We need to solve for Am

l to get analytical expression for pressure in the
exterior domain.
The pressure gradient in the radial direction on the surface of the sphere is

∂p

∂r
(r, θ, φ) = Am

l u0P
m
l (cos θ) cos(mφ)

[
kl(h1

l−1(kr)− h1
l+1(kr))− kh1

l+1(kr)
(2l + 1)

]
(3)

The specified radial velocity (ṽr) and the pressure gradient in the radial direction on the surface of
the sphere (r = a) are related and can be used to obtain Am

l , that is,

ṽr(θ, φ)(ikZ0) =
∂p

∂r
(a, θ, φ) (4)

Am
l =

−(ikZ0)(2l + 1)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

(5)

Thus, the analytical expression for pressure at any point (r, θ, φ) in the exterior domain is given by

p(r, θ, φ) =
[ −(ikZ0)(2l + 1)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
u0P

m
l (cos θ) cos(mφ)h1

l (kr) (6)

The velocity at the exterior point (r, θ, φ) is

−→v (r, θ, φ) = 1/(ikZ0)
−→∇p(r, θ, φ) (7)
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vr(r, θ, φ) = −u0

[
klhl−1(kr)− klhl+1(kr)− khl+1(kr)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
Pm

l (cos θ) cos(mφ) (8)

vθ(r, θ, φ) = (1/r)u0

[
hl(kr)(2l + 1)

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

] [
lPl−1(cos θ)− l cos θPm

l (cos θ)
sin θ

]
cos(mφ)

(9)

vφ(r, θ, φ) = (m/r)u0

[
hl(kr)(2l + 1)

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
Pm

l (cos θ)
sin θ

sin(mφ) (10)

where vr, vθ and vφ are the components of velocity in the spherical coordinate system.
The pressure and velocity in Cartesian coordinates can be obtained by applying the following trans-
formations:

r =
√

x2 + y2 + z2

θ = arccos(z/
√

x2 + y2 + z2), 0 ≤ θ ≤ π

φ = arctan(y/x), 0 ≤ φ ≤ 2π

(11)

p(x, y, z) = p(r(x, y, z), θ(x, y, z), φ(x, y, z)) (12)

vx(x, y, z) =
x

r
vr +

xz

r
√

x2 + y2
vθ − y√

x2 + y2
vφ (13)

vy(x, y, z) =
y

r
vr +

yz

r
√

x2 + y2
vθ +

x√
x2 + y2

vφ (14)

vz(x, y, z) =
z

r
vr −

√
x2 + y2

r
vθ (15)

The pressure on the exterior surface of the sphere can be written in terms of the spherical harmonic
excitation on the exterior surface as

p(a, θ, ϕ) = f.(ikzo)vr(θ, ϕ) = (fr + ifi).(ikzo)vr(θ, ϕ) = (kzo)(−fi + fr)vr(θ, ϕ)

where the factor f = (fr + ifi) is

f =
(2l + 1)h1

l (ka)[
kl(h1

l−1(ka)− h1
l+1(ka))− kh1

l+1(ka)
]

Using the orthogonality of the associated Legendre functions, that is,
1∫

−1

[Pm
l (x)]2dx = 1

the integral over the norm of the radial velocity is reduced to
∫
S

|vr|2dS =
∫ ∫

u2
0[P

m
l (cos θ)]2[cos2 mφ]a2 sin θdθdϕ

= Cmπa2u2
0

where Cm = 1 for m 6= 0, and Cm = 2 for m = 0.
The analytical expression for the radiated power (W) due to spherical harmonic excitation on a
sphere is derived to be,

W = 1
2Re{∫

S

pv∗dS}
= − 1

2kzofi

∫
S

|vr|2dS

= −Cm
1
2kzofiπa2u2

0

(16)

where Cm = 1 for m 6= 0, and Cm = 2 for m = 0.
The radiation efficiency σ0 is given by,

σ0 =
W

1
2

∫
S

zov2
r(θ, ϕ)dS

= −kfi (17)
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5 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
Indirect model. An Analysis Sequence stores all the parameters required to carry out an analysis,
such as frequency of analysis, solution method to be used, etc. In the demo model, the analysis is
performed for the frequency range ka = 0.2 to ka = 10 with a resolution ∆ = 0.2 using the Fast
Multipole Method (FMM) by running “Run Validation - FMM”. Coustyx analysis results, along with
the analytical solutions, are written to the output file “validation results fmm.txt”. The results can
be plotted using the matlab file “PlotResults.m”.
The indirect BE model solves for the surface potentials µ and σ. These are, in turn, used to compute
radiated sound power at analysis frequencies. Please note that Coustyx doesn’t compute input sound
power for discontinuous velocity BC, as the input sound power definition is arbitrary when both
the interior and exterior surfaces of the sphere have different velocities. So the default zero output
values for input sound power and radiation efficiency should be ignored.
Figure 3 shows comparisons of radiated sound power computed from both Coustyx and analytical
methods for a frequency range ka = 0.2 to ka = 10. The comparisons show very good agreement
between the methods. From the Figure 3 one can see that the interior cavity resonances at ka = 5.6
and ka = 9.8 are suppressed in the solution from Coustyx due to the use of discontinuous BCs. One
can verify the existence of these resonances by changing the boundary condition from discontinuous
BC to continuous normal velocity BC with spherical harmonic excitation.
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Figure 3: Radiated sound power comparisons for a sphere with spherical harmonic excitation.


