
Linear Duct with a Movable Wall - Exact Solution

In this example problem, the sound field inside a linear duct is studied. The wall on the right hand
side is movable and is supported by a spring and damper. In addition, the right wall is acoustically
rigid. Vibration excitation is provided by shaking the left wall. Here, we describe the steps in
preparing the model, and compare the solution from Coustyx with the exact analytical solution. We
came across this example in a paper by Suzuki [1] and created a Coustyx model to try it out. The
derivation of the analytical solution based on structure mobility, although straightforward, is new.
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Figure 1: Linear duct with a movable wall.

1 Model Preparation

We have a duct of length l = 0.34 m and cross section S = 0.08 m × 0.08 m. The BEM model is
created by importing the surface mesh of the duct, and specifying the fluid domain to be bounded
and on the interior of the mesh. The side of the surface mesh on the which the fluid domain of
interest lies, is obtained by first inspecting the orientation of the surface BEM mesh. If the element
normals are pointing to the outside, we specify that the fluid domain is on the negative side of the
mesh, as we are interested in the interior problem.

The structure model corresponding the right plate (right_plate) and the rigid body mode at
400.10 Hz are imported from a Nastran op2 file. Further, the coupling type of the structure is set
as Coupled as we have to consider the two way fluid-structure coupling at z = l.

The next task is to apply the correct boundary conditions to various faces of the BEM mesh. On
the left face, we specify a uniform normal velocity boundary of vn = −0.001 m/s. This corresponds
to vz = 1 mm/s, as the domain normal is oriented in the negative z direction. Zero normal velocity
(rigid boundary condition) is specified on the side walls. On the right face at z = l, a structure
velocity boundary condition named z1str is specified. This boundary condition couples the acoustic
domain with the structure on this boundary surface.

2 Analytical Solution

2.1 Driving point mobility of the SDOF System

We assume time harmonic variation of e−iωt where ω is the excitation frequency. Let f(t) = Fe−iωt

be the applied force and x(t) = Xe−iωt be the deflection of the mass m.

mẍ+ cẋ+ k = f (1)
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(−mω2 − icω + k)X = F (2)

X

F
=

1

(−mω2 − icω + k)
(3)

The driving point mobility Y = Vm/F = −iωX/F is given as

Y =
Vm
F

=
−iω

(−mω2 − icω + k)

Y (ω) =
−ir

(mωn)((1 − r2) − i(2ζr))
(4)

where r = ω/ωn is the ratio of the excitation frequency ω to the natural frequency ωn of the SDOF
system. In the SDOF system used in this example, mass m = 0.01 Kg, stiffness k = 6.32 × 104N/m
and damping c = 0.503N s/m. This corresponds to an in vacuo natural frequency of 400 Hz and
damping ratio of ζ = 0.01.

2.2 Acoustic field inside the duct

We can assume the sound field inside the duct to be of the form (In this derivation we use the
coordinate x to be the position coordinate in the duct. In the Coustyx model the duct is along the
z direction.)

p(x) = Aeikx +Be−ikx (5)

The expression for velocity in the x-direction is

vx(x) =
A

Z0
eikx − B

Z0
e−ikx (6)

The coefficients A and B are obtained so that the prescribed velocity boundary condition at x = 0
and boundary condition at x = l are satisfied exactly.

The velocity boundary condition at x = 0 is vx(0) = V0. This yields

V0 =
A

Z0
− B

Z0

V0Z0 = A−B (7)

Consider the boundary condition at x = l. At this boundary, the acoustic particle velocity vx(l)
must be same as the structure velocity Vm. It can be written as

vx(l) = Vm (8)

However, the velocity of the mass Vm is obtained using the driving point mobility Y (ω) as

Vm = p(l)SY (ω) (9)

where S is the cross-sectional area over which the sound pressure loading p(l) acts on the structure.
From Equation 8 and Equation 9, the boundary condition at x = l can be expressed as

p(l)SY (ω) − vx(l) = 0 (10)

The system of equations for the unknown coefficients A and B are obtained from Equation 7 and
Equation 10 as [

1 −1
eikl(SY Z0 − 1) e−ikl(SY Z0 + 1)

]{
A
B

}
=

{
V0Z0

0

}
(11)



Solving for A and B yields {
A
B

}
=
V0Z0

∆

{
e−ikl(SY Z0 + 1)
−eikl(SY Z0 − 1)

}
(12)

The expressions for the pressure field inside the duct is given as

p(x) =
V0Z0

∆

{
e−ik(l−x)(SY Z0 + 1) − eik(l−x)(SY Z0 − 1)

}
p(x) = V0Z0

{
e−ik(l−x)(SY Z0 + 1) − eik(l−x)(SY Z0 − 1)

e−ikl(SY Z0 + 1) + eikl(SY Z0 − 1)

}
(13)

The expressions for the velocity field inside the duct is given as

vx(x) =
V0
∆

{
e−ik(l−x)(SY Z0 + 1) + eik(l−x)(SY Z0 − 1)

}
vx(x) = V0

{
e−ik(l−x)(SY Z0 + 1) + eik(l−x)(SY Z0 − 1)

e−ikl(SY Z0 + 1) + eikl(SY Z0 − 1)

}
(14)

Substituting x = 0 in Equation 14 yields vx(0) = V0, as should be expected.

2.3 Comparison with exact Solution

We ran Coustyx on this model from 20 Hz to 1000 Hz in 20 Hz increments. The sound pressure at
the vibrating left wall (z = 0) from Coustyx is compared with the exact solution (Equation 13) in
Figure 2. It is evident that there is an excellent agreement between the two. The maximum relative
error was 6.22% at 240 Hz when the exact pressure at z = 0 is minimum. Notice that the structural
acoustic coupling decreased the structure resonant frequency from 400 Hz (in vacuo mode)to 380 Hz,
while the first in vacuo acoustic mode increased from 500 Hz to 520 Hz.
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Figure 2: Frequency response of the sound pressure at Point A, comparison with exact solution.
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