
Rectangular panel backed by a closed cavity

1 Introduction

This example demonstrates the structural-acoustic coupling between an elastic rectangular panel
backed by a closed rectangular acoustic cavity. Structural-acoustic coupling is typically modeled
when the response of a structure is influenced by the acoustic pressure on its surface and vice versa.
Typically thin shell structures are readily excited by acoustic pressure when the ambient density of
the medium is comparable to the structural density. Modeling structural-acoustic coupling for such
cases is important as the coupled system behaves entirely different from the uncoupled structure or
uncoupled acoustic systems.
An analytical solution based on the series expansion derived by Pretlove [1] is used to check the
accuracy of Coustyx results.

(a) Problem Schematic (b) Boundary Element Model

Figure 1: Rectangular panel backed by a closed cavity.

2 Problem Statement

A schematic of the rectangular panel backed by the cavity is shown in Figure 1. The cavity is
backed by the flexible panel on one side and by rigid walls on all other sides. The panel is simply
supported on its edges. The panel has dimensions 1 m x 1 m and thickness t = 0.01m. The cavity
has dimensions 1 m x 1 m x 1 m. The panel is assumed to be made of steel with young’s modulus
E = 210GPa, density ρs = 7900 kg/m3 and poisson’s ratio ν = 0.3. The fluid medium inside the
cavity is water with a sound speed of c = 1481m/s and an ambient density of ρw = 1000Kg/m3.
A point force of f = 1N is applied at location (0.2,0.3) on the panel to excite the system. We
are interested in computing the response at the same location with the two-way structural-acoustic
interaction taken into account.

3 Analytical Solution

A series solution developed by Pretlove [1] is used for analytical solution. The solution is rederived
here for completeness. Note that the equations in the paper are modified to suit our time-dependence
convention e−jωt.
Let us consider a cavity of dimensions a x b x c. The panel on the side of the cavity at z = c is
assumed to be flexible and the rest of the side walls are assumed to be rigid.
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The Helmholtz wave equation for the acoustic cavity is given by[
∇2 + k2

]
p(x, y, z) = 0 (1)

where p(x, y, z) is the acoustic pressure field, and k = ω
c is the wave number.

Employing separation of variables we look for solutions of the form,

p(x, y, z) = X(x)Y (y)Z(z) (2)

The boundary conditions the wave equation needs to satisfy are,

at x = 0, a :
∂p(x, y, z)

∂x
=

dX(x)

dx
= 0 (3)

at y = 0,b :
∂p(x, y, z)

∂y
=

dY (y)

dy
= 0 (4)

at z = 0 :
∂p(x, y, z)

∂z
=

dZ(z)

dz
= 0 (5)

at z = c :
∂p(x, y, z)

∂z
= X(x)Y (y)

dZ(z)

dz
= jρwωẇp (6)

where ẇp = −jωwp is the velocity and wp is the transverse vibration of the flexible panel, ρw is
ambient density of fluid, ω is the frequency of analysis, and j =

√
−1

From the rigid boundary conditions at x = 0, a, and y = 0, b, the general solution takes the form,

p(x, y, z) =
∞∑

n=0

∞∑
m=0

cos
(nπx

a

)
cos

(mπy

b

)
Z(z) (7)

Substituting Equation 7 in Equation 1 we obtain

d2Znm(z)

dz2
− µ2

nmZnm = 0 (8)

where,

µ2
nm =

[(nπ
a

)2

+
(mπ

b

)2
]
−

(ω
c

)2

The general solution for Equation 8 is of the form

Zmn(z) = A cosh (µnmz) +B sinh (µnmz)

Applying the boundary conditions at z = 0, c from Equation 5 and Equation 6 we obtain

B = 0

and,

jρwωẇp =

∞∑
n=0

∞∑
m=0

cos
(nπx

a

)
cos

(nπy
b

)
µnmAnm sinh (µnmc) (9)

Now let us look at the general expression for plate deflection. Since the flexible panel at z = c is
simply supported, the vibration of the panel is given in terms of plate modes as follows:

wp =
∞∑
r=1

∞∑
s=1

Wrs sin
(rπx

a

)
sin

(sπy
b

)
(10)

where Wrs is the modal contribution of the mode at (r, s) to the total response.
The double sines in the Equation 10 could be expanded as a series sum of double cosines using the
following expressions.

sin
(rπx

a

)
sin

(sπy
b

)
=

∞∑
n=0

∞∑
m=0

αrs
nm cos

(nπx
a

)
cos

(mπy

b

)
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where the coefficient αrs
nm is

αrs
00 =

4

π2rs

αrs
n0 = − 8r

π2s(n2 − r2)

αrs
n0 = − 8s

π2r(m2 − s2)

αrs
nm =

16rs

π2(n2 − r2)(m2 − s2)
; n,m ̸= 0

For a plate mode at (r, s), Equation 9 reduces to

ρwω
2Wrs

∞∑
n=0

∞∑
m=0

αrs
nm cos

(nπx
a

)
cos

(mπy

b

)
=

∞∑
n=0

∞∑
m=0

cos
(nπx

a

)
cos

(mπy

b

)
µnmAnm sinh (µnmc)

Therefore,

Anm =
ρwω

2Wrsα
rs
nm

µnm sinh (µnmc)

Hence the acoustic pressure inside the cavity due to the (r, s) plate mode is

p(x, y, z) = ρwω
2Wrs

∞∑
n=0

∞∑
m=0

αrs
nm

µnm

cosh (µnmz)

sinh (µnmc)
cos

(nπx
a

)
cos

(nπy
b

)
(11)

Let us now examine the equation of motion for the forced vibration of the panel. It is given by

ρstẅp +D

[
∂4wp

∂x4
+ 2

∂4wp

∂x2∂y2
+

∂4wp

∂y4

]
= F ext(x, y) + F (x, y) (12)

where D = Et3

12(1−ν2) is the bending stiffness of the plate, F ext(x, y) is the sum of all external applied

forces, and F (x, y) is the acoustic pressure loading. Here the plate is applied with a point force of
amplitude F0 at (x0, y0). Therefore, F ext(x, y) = F0δ(x − x0, y − y0), where δ is the Dirac delta
function.
Using Equation 10 and the orthogonality of plate modes, the equation of motion for a (r, s)

th
plate

mode reduces to

−ω2ρst
ab

4
Wrs +D

ab

4

[(rπ
a

)2

+
(sπ

b

)2
]2

Wrs = F ext
rs + Frs (13)

where the external modal force (F ext
rs ) and acoustic modal force (Frs) are

F ext
rs = F0 sin

(rπx0

a

)
sin

(sπy0
b

)

Frs =

a∫
x=0

b∫
y=0

pback sin
(rπx

a

)
sin

(sπy
b

)
dxdy

and pback is the acoustic back pressure on the plate.
We recognize that the acoustic loading at (r, s) plate mode includes contributions from the back
pressures pr

′s′

back at other modes (r′, s′) as well. Using Equation 11 for estimating the back pressure

pr
′s′

back and applying the orthogonality conditions, the acoustic loading at (r, s) mode due to the back
pressure at (r′, s′) mode is given by

F r′s′

rs = ρwω
2Wrs

∞∑
n=0

∞∑
m=0

αrs
nmαr′s′

nm

µnm
coth (µnmc)

a∫
x=0

cos2
(nπx

a

)
dx

b∫
y=0

cos2
(nπy

b

)
dy (14)
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Finally, the equation of motion at (r, s) mode can be rewritten as

−ω2MrsWrs +Kplate
rs Wrs +

∑
r′s′

Kr′s′

rs Wr′s′ = F0 sin
(rπx0

a

)
sin

(sπy0
b

)
(15)

and,

Mrs = ρst
ab

4

Kplate
rs = D

ab

4

[(rπ
a

)2

+
(sπ

b

)2
]2

Kr′s′

rs = −ρwω
2Wrs

∞∑
n=0

∞∑
m=0

αrs
nmαr′s′

nm

µnm
coth (µnmc)

a∫
x=0

cos2
(nπx

a

)
dx

b∫
y=0

cos2
(nπy

b

)
dy

where Mrs, K
plate
rs are the modal mass and modal stiffness matrices of the plate; Kr′s′

rs is the cross
stiffness terms due to the structural-acoustic coupling.
To obtain a solution to the above equation (Equation 15), we limit the number of modes in the
infinite series and form system matrix that is inverted to solve for the unknown modal coefficients
Wrs. Once we obtain Wrs, we can then easily compute the panel vibration or acoustic pressure
inside the cavity using Equation 10 and Equation 11 respectively.

4 Coustyx Solution

The structural-acoustic coupling in Coustyx is modeled by combining the finite element method
for structural analysis and the boundary element method for acoustic analysis. Instead of using the
finite element mass and stiffness matrices, Coustyx formulations use the normalized invacuo vibration
modes (ortho-normalized with respect to the finite element mass matrix) and eigen frequencies for
modeling the structure. The invacuo modes and natural frequencies are computed from the modal
analysis performed using any external FE packages.
The steps followed to model the two-way structural-acoustic interaction are:

• Perform finite element modal analysis. Finite element modal analysis is performed to
compute modes and eigen frequencies of the structure in vacuum (in the absence of any fluid
medium). These invacuo modes are ortho-normalized with respect to the finite element mass
matrix before importing into Coustyx.

• Load modes and perform coupled analysis in Coustyx. The invacuo modes computed
in the previous step are loaded into Coustyx. The coupled analysis in Coustyx is performed
by applying structure velocity boundary condition on the boundary element mesh with the
structure tagged as coupled.

4.1 Finite element analysis

We performed modal analysis on the simply supported plate using external finite element software
to estimate invacuo modes and natural frequencies. The finite element model of the plate has 20 x 20
quadratic shell elements (Figure 2). Table 4.1 compares the first few natural frequencies computed
from closed form analytical solution and finite element analysis. Figure 3 shows the first six free
vibration mode shapes for the plate.

4.2 Coupled Model in Coustyx

To setup Coustyx model, we imported the plate structure mesh and the invacuo modes computed
from the finite element modal analysis performed earlier. The plate structure is tagged as Coupled
using Coupling type options. The external excitation is applied as a nodal force of value 1 at the
node located at (0.2,0.3). We added small modal damping for all the modes.
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Figure 2: Panel finite element mesh.

(a) Mode (1,1): 49 Hz (b) Mode (1,2): 122.5 Hz (c) Mode (2,1): 122.5 Hz

(d) Mode (2,2): 196 Hz (e) Mode (1,3): 245 Hz (f) Mode (3,1): 245 Hz

Figure 3: Invacuo mode shapes for the first six free vibration modes of a simply supported plate.
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Table 1: Invacuo natural frequencies for a simply supported plate

Mode (r,s) Analytical (Hz) FEA (Hz)
(1,1) 49.02 49.00
(1,2) 122.54 122.43
(2,1) 122.54 122.43
(2,2) 196.06 195.78
(1,3) 245.08 244.65
(3,1) 245.08 244.65
(2,3) 318.60 317.87
(3,2) 318.60 317.87
(1,4) 416.63 415.47
(4,1) 416.63 415.47
(3,3) 441.14 439.74
(2,4) 490.16 488.50
(4,2) 490.16 488.50
(3,4) 612.69 610.06
(4,3) 612.69 610.06

The boundary element mesh of the cavity used for Coustyx model is shown in Figure 1. The side of
the cavity at z = 0 is applied with the plate structure velocity boundary condition. All other sides
are applied with rigid boundary conditions, vn = 0.
Analysis is carried out by running the Analysis Sequences defined in the Coustyx model named Run

Validation - FMM . An Analysis Sequence stores all the user inputs specified for an analysis, such
as boundary integral formulation type, frequency range and spacing, solution method, along with
various requested outputs.

5 Results and Discussion

Figure 4 shows the frequency response (displacement amplitude in z direction) at the location
(0.2,0.3) from both Coustyx and analytical solutions. The comparisons show that Coustyx pre-
dicts the frequency response of the coupled system very accurately. We note that the resonant
peaks for the coupled system occur at frequencies entirely different from the plate invacuo natural
frequencies or acoustic room modes.
The vibration modes of the panel near each of the resonant peaks is shown in Figure 4. For invacuo
plate modes with non-zero average flux at the plate interface the acoustic cavity have the effect of
added stiffness to the system. This makes these modes appear at much higher frequencies in the
coupled system. For example, the invacuo plate mode(1,1) at 49 Hz does not appear in the frequency
range of 10-250 Hz at all. Whereas for the invacuo plate modes with zero average flux at the plate
interface the acoustic cavity have the effect of added mass to the system. For example, the invacuo
plate mode(2,1) at 122.5 Hz appears at lower frequency 61 Hz due to this effect. Other resonant
peaks at 112, 134, 150 and 201 Hz have mode shapes that correspond to invacuo plate modes with
zero average flux at the plate interface.
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Figure 4: Frequency response of the panel coupled to the acoustic cavity.
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