
Plane Wave Scattering by an Elastic Spherical

Shell

1 Introduction

In this example we will investigate the sound scattered by an elastic spherical shell impinged by
an acoustic plane wave. We consider the two-way coupling between the acoustic pressure and the
structure response to account for (a) the response of the shell to the surface pressure, and (b) the
sound radiated by the vibrating shell. Modeling two-way coupling is important for many systems,
especially for systems with thin elastic shell structures submerged in heavy fluids like water. An
analytical solution presented in Junger and Feit [1] is used to validate the accuracy of Coustyx
results.

(a) Problem Schematic (b) Boundary Element Model

Figure 1: Acoustic problem description.

2 Problem Statement

A schematic of the problem is shown in Figure 1. An elastic spherical shell with middle surface
radius a = 1m, thickness h = 0.01m, and centered at the origin (0,0,0) is considered. A plane wave
of amplitude p0 = 1 propagating in the +z direction is scattered by the sphere. The fluid medium
surrounding the sphere is assumed to be water with a sound speed of c = 1481m/s and an ambient
density of ρ = 1000Kg/m3. The spherical shell is assumed to be made of steel with young’s modulus
E = 210GPa, density ρs = 7800 kg/m3 and poisson’s ratio ν = 0.3. We are interested in computing
the sound scattered by the elastic sphere.

3 Analytical Solution

Analytical solution presented in Junger and Feit [1] is described here briefly for completeness. For
greater details please refer to their work. Note: we assume e−iωt convention through out this article.

An incident plane wave of amplitude p0 propagating in +z direction is given by

pinc = p0e
ikz (1)

The plane wave could be represented as a series sum of spherical harmonics as follows,

pinc = p0

N∑
l=0

(2l + 1)ilPl(cos θ)jl(kr) (2)
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where jl is the spherical Bessel function, Pl is the Legendre function of order l, and i =
√
−1.

Let ptotal be the total sound pressure in the domain,

ptotal = pinc + pse (3)

where pinc is the incident pressure and pse is the pressure scattered by the elastic sphere.
Let us further consider that the scattered pressure by the elastic sphere pse is a sum of the

scattered pressure by a rigid sphere ps∞, and the radiated pressure due to shell vibration pr, i.e.,

pse = ps∞ + pr (4)

The boundary condition on the sphere is

∂ptotal
∂r

= iρωẇ (5)

where ẇ is the radial velocity of the spherical shell, and ω is the frequency of excitation in rad/s.
By definition, on the surface of the sphere the ”rigid-body” scattered pressure ps∞ and the

incident pressure pinc are related as follows,

∂pinc
∂r

+
∂ps∞
∂r

= 0 (6)

From Equation 5 and Equation 6 we can deduce that the radiated pressure pr is directly related
to the vibration of the spherical shell as

∂pr
∂r

= iρωẇ (7)

The pressure scattered by a rigid sphere impinged by a plane wave is given by [2]

ps∞ = −p0

N∑
l=0

(2l + 1)ilPl(cos θ)
j′l(ka)

h′
l(ka)

hl(kr) (8)

where hl is the spherical Hankel function of the first kind of order l, and ′ ≡ ∂
∂r .

Following the arguments in Junger and Feit [1], we consider only the sum of the incident and
”rigid-body” scattered pressures (pinc+ps∞) as the surface pressure excitation and treat the radiation
loading as part of the coefficient (LHS) matrix through radiation impedance. Thus, the surface
pressure excitation on the spherical shell is

pext = pinc + ps∞ = p0

N∑
l=0

(2l + 1)il+1

(ka)
2
h′

l(ka)
Pl(cos θ) =

N∑
l=0

plPl(cos θ) (9)

The forced velocity response of the spherical shell due to the excitation in Equation 9 is given by

ẇ = −
N∑
l=0

plPl(cos θ)

(Zl + zl)
(10)

where Zl is the invacuo modal impedance of the spherical shell, and zl is the modal specific
acoustic impedance.

The invacuo modal impedance of the spherical shell is given below. Note that these equations
are only applicable for axisymmetric motions.

Zl = − iρscp
Ω

· h
a
·

[
Ω2 −

(
Ω

(1)
l

)2
] [

Ω2 −
(
Ω

(2)
l

)2
]

[Ω2 − (1 + β2)(ν + λl − 1)]
(11)

where Ω
(1)
l , Ω

(2)
l are the nondimensional natural frequencies of the spherical shell obtained by

solving Equation 12, λl = l(l+1), cp is the velocity of compressional waves in the structure as given
in Equation 13, Ω = ω a

cp
is dimensionless driving frequency, and,

β2 =
h2

12a2
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The nondimensional natural frequencies of the spherical shell (with axisymmetric motions as-
sumption) are computed by solving the equation

Ω4 −
[
1 + 3ν + λl − β2(1− ν − λ2

l − νλl)
]
Ω2 + (λl − 2)(1− ν2)

+β2
[
λ3
l − 4λ2

l + λl(5− ν2)− 2(1− ν2)
]
= 0

(12)

The compressional wave speed in the structure is given by

cp =

√
E

(1− ν2)ρs
(13)

The modal specific acoustic impedance is given by

zl = iρc
hl(ka)

h′
l(ka)

(14)

The radiated pressure due to the spherical shell vibration in Equation 10 is given by

pr = p0

N∑
l=0

(2l + 1)ilρc

(Zl + zl) [kah′
l(ka)]

2Pl(cos θ)hl(kr) (15)

The total scattered pressure by an elastic spherical shell is obtained from Equation 4, pse =
ps∞ + pr, where the ”rigid-body” scattered pressure ps∞ is from Equation 8, and the radiated
pressure is from Equation 15.

4 Coustyx Solution

The structural-acoustic coupling in Coustyx is modeled by combining the finite element method
for structural analysis and the boundary element method for acoustic analysis. Instead of using the
finite element mass and stiffness matrices, Coustyx formulations use the normalized invacuo vibration
modes (ortho-normalized with respect to the finite element mass matrix) and eigen frequencies for
modeling the structure. The invacuo modes and natural frequencies are computed from the modal
analysis performed using any external FE packages.

The steps followed to model the two-way structural-acoustic interaction are:

• Perform finite element modal analysis. Finite element modal analysis is performed to
compute modes and eigen frequencies of the structure in vacuum (in the absence of any fluid
medium). These invacuo modes are ortho-normalized with respect to the finite element mass
matrix before importing into Coustyx.

• Load modes and perform coupled analysis in Coustyx. The invacuo modes computed
in the previous step are loaded into Coustyx. The coupled analysis in Coustyx is performed
by applying structure velocity boundary condition on the boundary element mesh with the
structure tagged as coupled.

4.1 Finite element analysis

We performed modal analysis on unconstrained sphere using an external finite element software to
estimate invacuo modes and natural frequencies. The first few natural frequencies along with their
degeneracy in paranthesis are 0 Hz (6), 606.85 Hz (3), 606.88 Hz (2), 718.84 Hz (3), 718.85 Hz (2),
etc. The first six modes with zero frequencies belong to the rigid body motions of the sphere.

4.2 Coupled Model in Coustyx

To setup Coustyx model, we imported the sphere mesh and the invacuo modes computed from the
finite element modal analysis performed earlier. The sphere structure is tagged as Coupled using
Coupling type options. A small amount of modal damping is added to all the modes.

The boundary element mesh of the sphere used for Coustyx model is shown in Figure 1. A
structure velocity boundary condition is applied to the entire sphere. A plane wave of amplitude
p0 = 1 is defined at the origin (0,0,0) in the +z direction.

Coustyx Direct BE method is used to solve the acoustic problem. In Direct BE method, the
primary variables are the pressure and the pressure gradient on the boundary. Field point solutions
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are then computed from the surface solutions. For this problem we assume the coupling between
the structure and the exterior acoustic domain only.

5 Results and Discussion

Figure 2 shows the nondimensional scattered pressure at r=10 m and θ = 0 from both Coustyx
and analytical solutions. The comparisons show that Coustyx predicts the response of the coupled
system very accurately. The resonance peaks at 280, 360, and 410 Hz correspond to the natural
frequencies of the submerged elastic spherical shell (refer to Table 9.1 in [1]).

Figure 3 shows angular distribution of the scattered pressure field by the elastic sphere at r=10m
at resonant and nonresonant frequencies of 280 and 500 Hz. The quantities are plotted versus the
polar angle θ. θ = 180o corresponds to the front end of the sphere with respect to the impinging
plane wave. The comparisons between Coustyx and Analytical solution show very good agreement.
Analytical solution for the sound scattered by a rigid sphere is also plotted for reference.

Figure 2: Back scattering by an elastic sphere.

(a) Frequency=280 Hz (b) Frequency=500 Hz

Figure 3: Angular distribution of pressure field (in dB) scattered by an elastic sphere at different
frequencies. Reference pressure for water pref = 1µPa.
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