
Acoustic Field inside a Rigid Cylinder with a Point Source

1 Introduction

The main objectives of this Demo Model are to

• Demonstrate the ability of Coustyx to model a rigid cylinder with a point source using Coustyx
MultiDomain model and solve for the acoustic field distribution inside the cylinder.

• Derive analytical solution using modal expansion method.

• Validate Coustyx software by comparing the results from Coustyx to the analytical solutions
in the presence of acoustic sources.

2 Model description

We model a cylinder of radius a = 1m and length L = 6 m. The cylinder axis is parallel to the z-axis
and the center of the bottom end of the cylinder coincides with the origin (as shown in Figure 1).
The fluid medium inside the cylinder is air with mean density ρo = 1.21 kg/m3 and sound speed
c = 343− i ∗ 10m/s. A complex speed of sound introduces damping in the system. The imaginary
part of the speed of sound should always be negative for a decaying sound wave. The wavenumber
at a frequency ω is given as k = omega/c. A monopole source of unit volume velocity is introduced
at (-0.2,-0.35,4) to simulate the point source in the cylinder. The cylinder is assumed to be rigid.
The BE mesh of the cylinder is shown in Figure 1.
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Figure 1: Rigid cylinder with a point source. (a) Acoustic problem, Note S–source, O–observation
point; (b) Boundary element mesh.

3 Boundary conditions

In the Coustyx MultiDomain model, the rigid boundary condition is simulated by applying the
boundary condition on the cylinder as “Uniform Normal Velocity” type with zero amplitude. That
is, vn = 0, where vn is the particle normal velocity on the surface of the cylinder in the Domain
Normal direction. Note that all boundary conditions in a MultiDomain model are defined with
respect to the Domain Normal, which always points away from the domain of interest. For this
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example, the interior domain is the domain of interest; hence, domain normal is pointing away from
the cylinder interior.

4 Analytical solution

We first compute modes for a rigid cylinder (of radius a and length L). These modes are then used
in modal expansion to evaluate field point pressure at any point inside the cylinder.

4.1 Eigenvalue problem

Table 1: Eigenvalues of a rigid cylinder from the roots of J ′m(kr,m) = 0, kr,m(n)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
0.000000 1.841184 3.054237 4.201189 5.317553 6.415616
3.831706 5.331443 6.706133 8.015237 9.282396 10.519861
7.015587 8.536316 9.969468 11.345924 12.681908 13.987189
10.173468 11.706005 13.170371 14.585848 15.964107 17.312842
13.323692 14.863589 16.347522 17.788748 19.196029 20.575515
16.470630 18.015528 19.512913 20.972477 22.401032 23.803581
19.615859 21.164370 22.671582 24.144897 25.589760 27.010308
22.760084 24.311327 25.826037 27.310058 28.767836 30.202849
25.903672 27.457051 28.977673 30.470269 31.938539 33.385444
29.046829 30.601923 32.127327 33.626949 35.103917 36.560778

The eigen-function Ψ(r, n) satisfies the Helmholtz equation at any point r(r, φ, z) inside the cylinder
[∇2 + k2

0(n)
]
Ψ(r, n) = 0 (1)

where k2
0(n) is the eigenvalue.

The eigen-function should also satisfy the rigid boundary conditions on the surface of the cylinder

∂Ψ(r, n)
∂n̂

= 0 (2)

where n̂ is the surface normal.
In cylindrical coordinate system ∇2 is given by

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
+

∂2

∂z2
(3)

To solve the eigenvalue problem, we assume that the eigen-function can be factored into a form
Ψ(r, n) = R(r)eimφZ(z). The Helmholtz equation is reduced to

1
R(r)

[
∂2R(r)

∂r2
+

1
r

∂R(r)
∂r

]
− m2

r2
+

1
Z(z)

∂2Z(z)
∂z2

+ k2
0 = 0 (4)

Applying separation of variables, we obtain independent equations for the axial factor Z(z) and the
radial factor R(r). The axial factor Z(z) satisfies

∂2Z(z)
∂z2

+ k2
zZ(z) = 0 (5)

and also the rigid boundary conditions on both ends of the cylinder,

∂Z

∂z
= 0, z = 0, and L (6)

Therefore, the axial factor Z(z) is the solution to above equations, which is Z(z) = cos(kzz), and
the eigen values kz = nzπ/L for nz = 0, 1, 2....
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The radial factor R(r) satisfies

∂2R(r)
∂r2

+
1
r

∂R(r)
∂r

+
(

k2
r −

m2

r2

)
R(r) = 0 (7)

where k2
r = k2

0 − k2
z , and the rigid boundary conditions are

∂R

∂r
= 0, r = a (8)

The solution to the above equation is the cylindrical Bessel function Jm(krr), where m is the order
and kr the eigenvalue.
The eigenvalues (kr,m(n)) are the roots of the derivative of the cylindrical Bessel function at r = a,
that is,

J ′m(kr,m(n)a) = 0 (9)

The above equation is solved numerically using Maple to find the eigenvalues. Table 4.1 shows the
first ten eigenvalues for m = 0, ..., 5.
Therefore, the eigen-function for a rigid cylinder is given by

Ψnz,m(n) = Jm(kr,m(n)r)eimφ cos(kzz) (10)

and the eigenvalues are kz = nzπ/2 for nz = 0, 1, 2..., and kr,m(n) given in Table 4.1.

4.2 Modal expansion

The acoustic field pressure p at any point r(r, φ, z) (inside the cylinder) due to the presence of a
point source at rs(rs, φs, zs) satisfies the Helmholtz equation

∇2p + k2p = $δ(r− rs) (11)

where the source strength $ = ikρocβo, βo is the volume velocity; δ(r − rs) is the Dirac delta
function.
The modal eigen-functions derived above form a complete set. Hence, the acoustic solution p inside
the cylinder can be approximated as a linear combination of these eigen-functions.

p =
∑
nz

∑
m

∑
n

Cnz,m,nΨnz,m(r, n)

=
∑
nz

∑
m

∑
n

Jm(kr,m(n)r) cos(kzz) [Anz,m,n cos mφ + Bnz,m,n sin mφ] (12)

where Anz,m,n, Bnz,m,n, and Cnz,m,n are mode participation coefficients.
We compute the mode participation coefficients by substituting Equation 12 into Equation 11, that
is,

∑
nz

∑
m

∑
n

[
k2 − k2

o

]
Jm(kr,m(n)r) cos(kzz) [Anz,m,n cosmφ + Bnz,m,n sinmφ] = $δ(r− rs) (13)

We use the following properties to compute Anz,m,n and Bnz,m,n. Normalization integral for cylin-
drical Bessel functions (refer [1]),

1∫
0

J2
m(αmr)rdr = 1

2α2
m

[
α2

m −m2
]
J2

m(αm), forαm 6= 0

= 1
2 , forαm = 0

or,

Nl =
a∫
0

J2
m(kr,m(n)r)rdr = a2

2(kr,ma)2

[
(kr,ma)2 −m2

]
J2

m(kr,ma), for kr,ma 6= 0

= 1
2 , for kr,ma = 0

and also,
L∫

0

cos2
nzπ

L
zdz =

{
L, nz = 0

L/2, nz 6= 0
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2π∫

0

cos2 mφdφ =
{

2π, m = 0
π, m 6= 0

2π∫

0

sin2 mφdφ =
{

0, m = 0
π, m 6= 0

To compute Anz,m,n, multiply both sides of Equation 13 with Jm(kr,m(n)r) cos(kzz) cos(mφ) and
integrate over the entire volume. Using the properties of various functions described above, along
with the properties of Dirac delta function, the coefficient Anz,m,n is derived.

Anz,m,n = $
Jm(kr,m(n)rs) cos(kzzs) cos mφs

[k2 − k2
o ]Nl2πεLη

(14)

where ε = 1 for m = 0, and ε = 1/2 for m 6= 0; η = 1 for nz = 0 and η = 1/2 for nz 6= 0.
Similarly, Bnz,m,n is computed by multiplying both sides of Equation 13 with Jm(kr,m(n)r) cos(kzz) sin(mφ).
Therefore,

Bnz,m,n = $ζ
Jm(kr,m(n)rs) cos(kzzs) sin mφs

[k2 − k2
o ] Nl2πLη

(15)

where ζ = 0 for m = 0, and ζ = 2 for m 6= 0.
Thus the modal expansion for the pressure at an observation point r(r, φ, z) inside the rigid cylinder
in the presence of a point source at rs(rs, φs, zs) is,

p(r, φ, z) =
∑
nz

∑
m

∑
n

$
Jm(kr,m(n)rs) cos

(
nzπ
L zs

)

[k2 − k2
o ] Nl2πεLη

Jm(kr,m(n)r) cos
(nzπ

L
z
)

cos (m(φ− φs)) (16)

where nz = 0, 1, 2, ..., m = 0, 1, 2, ... and n = 1, 2, ....
If the position is in Cartesian coordinates, it can be transformed into cylindrical coordinates using
the transformations given below:

r =
√

x2 + y2

φ = arctan(y/x), 0 < φ ≤ 2π

z = z

(17)

5 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an
analysis, such as frequency of analysis, solution method to be used, etc. In the demo model, the
analysis is performed at a frequency f = 200Hz using the Fast Multipole Method (FMM) by running
“Run Validation - FMM”. Coustyx analysis results, along with the analytical solutions, are written
to the output file “validation results fmm.txt”. The results can be plotted using the matlab file
“PlotResults.m”.
Coustyx MultiDomain model uses Direct BE method to solve the acoustic problem. In Direct BE
method, the primary variables are the pressure and the pressure gradient on the boundary. Field
point solutions are then computed from the surface solutions.
Figure 2 shows comparisons of field point pressures computed from both Coustyx and analytical
methods. The specified field points are located at (r, φ, z), where r = 0.8485 m, φ = π/4 and
z = 2 + i ∗ 0.1, i = 0, ..., 30. The comparisons show very good agreement between the solutions
computed from Coustyx and analytical expressions.
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Figure 2: Field point pressure comparisons inside a rigid cylinder with a point source from Coustyx
and analytical methods. Note that P is the field point pressure and $ = ikρocβo, where βo is the
volume velocity of the monopole source.
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