
Scattering of a Plane Wave by Two Concentric Penetrable

Spheres

1 Introduction

The main objectives of this Demo Model are

� Demonstrate the ability of Coustyx to model the scattering of a plane wave by two concentric
penetrable spheres immersed in an infinite domain.

� Derive an analytical solution.

� Validate Coustyx software by comparing Coustyx results to the analytical solution.

2 Model description

This model is used to study scattering of a plane wave by two concentric penetrable spheres immersed
in an infinite domain Outer. The radius of the inner sphere is a1 = 1m. The fluid medium
inside the inner sphere is InnerFluid with an ambient density ρ1 = 1000 kg/m3 and sound speed
c1 = 1500m/s. The outer sphere has a radius of a2 = 1.25m. The fluid medium in the annular region
betwen the two spheres is BetweenFluid and has an ambient density ρ2 = 800 kg/m3 and sound
speed c2 = 1324m/s. The fluid medium in the region exterior to the outer sphere is OuterFluid
with an ambient density ρ3 = 791 kg/m3 and sound speed c3 = 1121m/s. The boundaries between
at regions are perfectly transparent, meaning that the sound pressure and the normal component of
velocity are continuous across the fluid boundaries.
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Figure 1: Schematic of the problem: Two concentric spheres with different fluid media immersed in
an infinite medium and excited by a plane wave.
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A MultiDomain model is built in Coustyx for this problem, as there are multiple regions each
with a different fluid medium. There are two BE Meshes InnerSphere and OuterSphere. The
mesh normals for both these meshes are pointing radially outward. The domain Inner is defined as
a bounded region on the negative side of mesh InnerSphere with the fluid InnerFluid. Domain
Between is defined as a bounded region on the positive side of mesh InnerSphere and negative side
of mesh OuterSphere with the fluid BetweenFluid. Domain Outer is defined as an unbounded
region on the positive side of mesh OuterSphere with the fluid OuterFluid. The Outer domain
contains a plane wave acoustic source to model the incident pressure wave traveling in the z-direction.
The frequency of the incident wave is 800Hz.

2.1 Boundary Conditions
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Figure 2: Modeling the inner interface, the two boundary conditions associated it and applying them
to the appropriate domain.

Two transparent interfaces named Inner Interface and Outer Interface are created. Inner
Interface separates the Inner domain and the Between domain, with the Between domain on
the positive side of the interface, which means the interface normal goes from Inner domain to the
Outer domain, as shown in Figure 2.

Two boundary conditions Inner BC 1 and Inner BC 2 associated with Inner Interface are
created. Inner BC 2 is applied to the domain is on positive side of Inner Interface. Hence Inner
BC 2 is applied the to the elements of InnerSphere when it is considered as part of Between
domain. Inner BC 1 boundary condition is applied to the elements of InnerSphere when it is
considered as part of the Inner domain. Similarly, boundary conditions Outer BC 1 and Outer
BC 2 are applied to the BE Mesh OuterSphere when it is considered as part of Between and
Outer domains respectively.

3 Analytical solution

The incident pressure field in Outer domain is given as

pi = Po exp(ik3z) (1)
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Since the pressure variation is only along the z-direction, and is axisymmetric due to the boundary
conditions and geometry, the following forms can be assumed for the pressure field in each of the
regions.

p1(r, θ, ϕ) =

L∑
l=0

Aljl(k1r)Pl(cos θ) (2)

In Equation 2, p1(r, θ, ϕ) is the pressure in Region 1, jl represents the spherical Bessel function of
order l and Pl is the Legendre polynomial of degree l. As the domain is finite and the pressure field
is bounded at the origin, spherical Hankel functions are not used in the expansion in Equation 2.

p2(r, θ, ϕ) =

L∑
l=0

[Cljl(k2r) +Dlhl(k2r)]Pl(cos θ) (3)

In Equation 3, p2(r, θ, ϕ) is the pressure in Region 2, jl, hl represent spherical Bessel function and
spherical Hankel function of order l, and Pl is the Legendre polynomial of degree l. Both spherical
Bessel and Hankel functions are used in the expansion as the Between domain is bounded and does
not include the origin (Spherical Hankel functions have a singularity at the origin).

p3s(r, θ, ϕ) =

L∑
l=0

Flhl(k3r)Pl(cos θ) (4)

p3t(r, θ, ϕ) = p3s(r, θ, ϕ) + pi (5)

The total pressure in Region 3 is the sum of the scattered field given by p3s and the incident field
given by pi. The scattered field only has spherical Hankel function terms in order to satisfy the
Sommerfeld’s radiation condition (only outgoing waves) at infinity.

The radial velocity vr is related to the gradient of pressure.

vr =
1

ikZ

∂p

∂r
=

1

ikρc

∂p

∂r
(6)

In Equation 6, k = ω/c is the wavenumber and Z = ρc is the characteristic impedance of the fluid
medium. Taking Equation 2 as an example, the radial velocity in Region 1 v1r is expressed as

v1r(r, θ, ϕ) =
1

ik1Z1

L∑
l=0

Al
∂

∂r
jl(k1r)Pl(cos θ)

=
1

iZ1

L∑
l=0

Al
∂

∂(k1r)
jl(k1r)Pl(cos θ)

=
1

iZ1

L∑
l=0

Alj
′
l(k1r)Pl(cos θ) (7)

where j′l is the derivative of the spherical Bessel function (with respect to its argument). To compute
the derivative of the spherical Bessel and Hankel functions, the following recurrence relation is useful.

∂

∂z
jn(z) =

n

z
jn(z)− jn+1(z) (8)

The incident plane wave pi can be decomposed as series of spherical Bessel functions as follows.

pi = Po exp(ik3z) = Po

L∑
l=0

iljl(k3r)Pl(cos θ) (9)



http://www.ansol.com 4

Now we have all the necessary equations to set up the pressure and radial velocity continuity equa-
tions at the boundaries given by r = a1 and r = a2.

0 jl(k2a2) hl(k2a2) −hl(k3a2)
0 j′l(k2a2)/Z2 h′

l(k2a2)/Z2 −h′
l(k3a2)/Z3

jl(k1a1) −jl(k2a1) −hl(k2a1) 0
j′l(k1a1)/Z1 −j′l(k2a1)/Z2 −h′

l(k2a1)/Z2 0




Al

Cl

Dl

Fl

 =


Po(2l + 1)iljl(k3a2)

Po(2l + 1)ilj′l(k3a2)/Z3

0
0


(10)

In Equation 10, the first equation is the pressure continuity at r = a2, the second equation is the
radial velocity continuity at a2 while the third and fourth equations enforce the pressure and radial
velocity continuity at r = a1. The unknown coefficients for each order l are obtained by solving
the system of equations Equation 10. We have defined several script functions in the Context
Script of the Coustyx model to compute these coefficients. Once these coefficients are determined,
Equations 2, 3 and 5 are used to compute the pressure field in each of the domains.

4 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an
analysis, such as frequency of analysis, solution method to be used, etc. In this Demo Model, the
analysis is performed at a frequency f = 800Hz using the Fast Multipole Method (FMM) by running
“Run Validation - FMM”. In this analysis sequence, the surface results for the three domains are
written out to file output_validation_fmm.txt in folder coustyxtmp. The difference between the
Coustyx solution and the analytical series solution is less than 3%.

Figure 3 shows angular distribution of sound pressure amplitudes at field points in different
domains. The solutions from Coustyx are compared with the analtical series solution with maximum
order L = 45. The quantities are plotted versus the polar angle θ. θ = 180o corresponds to the
south pole (illuminated region) and θ = 0o corresponds to north pole (shadow region) of the sphere
with respect to the incident plane wave. The comparisons between the solutions computed using
Coustyx and analytical expressions show excellent agreement for field points in all domains.
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Figure 3: Total sound pressure at field points in various domains at r = 0.5, 1.125, 1.5m due to
incident plane wave excitation.


