
Two Concentric Penetrable Spheres with a Central Point

Source

1 Introduction

The main objectives of this Demo Model are

� Demonstrate the ability of Coustyx to model the propagation of a spherical wave by two
concentric penetrable spheres immersed in an infinite domain.

� Derive an analytical solution.

� Validate Coustyx software by comparing Coustyx results to the analytical solution.

2 Model Description

This model is used to study the propagation of a spherical wave through two concentric penetrable
spheres immersed in an infinite domain Outer. The radius of the inner sphere is a1 = 1m. The
fluid medium inside the inner sphere is InnerFluid with an ambient density ρ1 = 1000 kg/m3 and
sound speed c1 = 1500m/s. The outer sphere has a radius of a2 = 1.25m. The fluid medium in the
annular region betwen the two spheres isBetweenFluid and has an ambient density ρ2 = 800 kg/m3

and sound speed c2 = 1324m/s. The fluid medium in the region exterior to the outer sphere
is OuterFluid with an ambient density ρ3 = 791 kg/m3 and sound speed c3 = 1121m/s. The
boundaries between at regions are perfectly transparent, meaning that the sound pressure and the
normal component of velocity are continuous across the fluid boundaries.

O
�

�

�1

�2

�1, �1

�2, �2

Figure 1: Schematic of the problem: Two concentric spheres with different fluid media immersed in
an infinite medium and excited by a monopole source at the center.

A MultiDomain model is built in Coustyx for this problem, as there are multiple regions each
with a different fluid medium. There are two BE Meshes InnerSphere and OuterSphere. The
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mesh normals for both these meshes are pointing radially outward. The domain Inner is defined as
a bounded region on the negative side of mesh InnerSphere with the fluid InnerFluid. Domain
Between is defined as a bounded region on the positive side of mesh InnerSphere and negative side
of mesh OuterSphere with the fluid BetweenFluid. Domain Outer is defined as an unbounded
region on the positive side of mesh OuterSphere with the fluid OuterFluid. The Inner domain
contains a monopole acoustic source of source amplitude As = −1 which provides the excitation.
The frequency of the incident wave is 800Hz.

2.1 Boundary Conditions
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Figure 2: Modeling the inner interface, the two boundary conditions associated it and applying them
to the appropriate domain.

Two transparent interfaces named Inner Interface and Outer Interface are created. Inner
Interface separates the Inner domain and the Between domain, with the Between domain on
the positive side of the interface, which means the interface normal goes from Inner domain to the
Outer domain, as shown in Figure 2.

Two boundary conditions Inner BC 1 and Inner BC 2 associated with Inner Interface are
created. Inner BC 2 is applied to the domain is on positive side of Inner Interface. Hence Inner
BC 2 is applied the to the elements of InnerSphere when it is considered as part of Between
domain. Inner BC 1 boundary condition is applied to the elements of InnerSphere when it is
considered as part of the Inner domain. Similarly, boundary conditions Outer BC 1 and Outer
BC 2 are applied to the BE Mesh OuterSphere when it is considered as part of Between and
Outer domains respectively.

3 Analytical Solution

In this problem the geometry as well as the excitation are symmetric. Hence the pressure field
varies only with the distance r from the origin. If all the fluid media were identical, we would
have a outgoing spherical that emanate from the source and travel outward to infinity. However, in
this problem, the fluid medium in each region is different. Due to the impedance mismatch at the
interfaces, in the Inner and Between domains, we will have both incoming and outgoing waves.
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In the Outer domain, only outgoing wave will be present to satisfy the Sommerfeld’s radiation
condition at infinity. Thus we assume a pressure field in each of the domains as follows:

p1(r, θ, ϕ) = A
exp(ik1r)

4πr
+B

exp(−ik1r)

4πr
(1)

p2(r, θ, ϕ) = C
exp(ik2r)

4πr
+D

exp(−ik2r)

4πr
(2)

p3(r, θ, ϕ) = E
exp(ik3r)

4πr
(3)

The radial velocity vr is related to the gradient of pressure.

vr =
1

ikρc

∂p

∂r
=

1

ikZ

∂p

∂r
(4)

In Equation 4, k = ω/c is the wavenumber and Z = ρc is the characteristic impedance of the
fluid medium. Taking Equation 1 as an example, the radial velocity in Region 1 v1r is expressed as

v1r(r, θ, ϕ) =
1

ik1Z1

{
A
exp(ik1r)

4π

[
ik1
r

− 1

r2

]
+B

exp(−ik1r)

4π

[
−ik1
r

− 1

r2

]}
=

1

ik1Z1(4πr2)
{A exp(ik1r)(ik1r − 1) +B exp(−ik1r)(−ik1r − 1)}

=
1

ik1Z1(4πr2)
{A exp(ik1r)(ik1r − 1)−B exp(−ik1r)(ik1r + 1)} (5)

3.1 Conditions for Determining the Unknown Coefficients

3.1.1 Source at the Origin

∇2p1 + k21p1 = Asδ(r) (6)

Integrating Equation 6 over a small sphere of radius ϵ as ϵ → 0 will help us connect the source terms
with the amplitudes of the outgoing wave A and incoming wave B.∫

v

∇2p1 + k21p1 dv = As (7)

The second term on the left hand side goes to zero as p1 varies as 1/r.∫
v

∇2p1 dv = As∫
s

∂p1
∂r

ds = As

−(A+B) = As

A+B = −As (8)

3.1.2 Continuity Conditions at r = a1

At a point on r = a1, the pressure and radial velocity when the point is considered as part of Inner
domain or Between domain must be identical.
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3.1.3 Continuity Conditions at r = a2

At a point on r = a2, the pressure and radial velocity when the point is considered as part of
Between domain or Outer domain must be identical.

The source and continuity conditions yield all the necessary equations required to determine the
unknown coefficients.

1 1 0 0 0
eik1a1 e−ik1a1 −eik2a1 −e−ik2a1 0

eik1a1 (ik1a1−1)
k1Z1

−e−ik1a1 (ik1a1+1)
k1Z1

−eik2a1 (ik2a1−1)
k2Z2

e−ik2a1 (ik2a1+1)
k2Z2

0

0 0 eik2a2 e−ik2a2 −eik3a2

0 0 eik2a2 (ik2a2−1)
k2Z2

−e−ik2a2 (ik2a2+1)
k2Z2

−eik3a2 (ik3a2−1)
k3Z3




A
B
C
D
E



=


−As

0
0
0
0

 (9)

In Equation 9, the first equation is source condition at the origin, the second and third equations
are pressure and radial velocity continuity at a1 while the fourth and fifth equations enforce the
pressure and radial velocity continuity at r = a2. We have defined script functions in the Context
Script of the Coustyx model to compute these coefficients. Once these coefficients are determined,
Equations 1, 2 and 3 are used to compute the pressure field in each of the domains.

4 Results and Validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an
analysis, such as frequency of analysis, solution method to be used, etc. In this Demo Model, the
analysis is performed at a frequency f = 800Hz using the Fast Multipole Method (FMM) by running
“Run Validation - FMM”. In this analysis sequence, the surface results for the three domains are
written out to file output_validation_fmm.txt in folder coustyxtmp. The difference between the
Coustyx solution and the analytical solution is less than 1.21%. The sound pressure along a radial
line in the z-direction is also computed using Coustyx and the analytical solution. The results are
written to file coustyxtmp/sensor_comparison_fmm.txt. Both solutions are within 0.6% of each
other. Figure 3 shows the variation of sound pressure with the distance from the center, where the
solutions from Coustyx are compared with the analytical solution; excellent agreement is observed.
As expected, for a point monopole source, the overall pressure varies inversely with distance, however
the effects of dissimilar media are clearly seen at the interface boundaries as a change in slope.
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Figure 3: Sound pressure at field points in various domains at due to excitation by a point monopole
source at the center.


