
Radiation from a Hemisphere in a Rigid Baffle

1 Introduction

The main objectives of this Demo Model are to

• Illustrate the sound radiation from a hemispherical dome tweeter, by considering the problem
of a hemisphere mounted in an infinite rigid baffle. The hemisphere is vibrating as a rigid
body along its axis (z-axis) with an amplitude va.

• This problem is amenable to an analytical solution using spherical harmonic expansion. The
numerical solution from Coustyx is compared with the analytical solution to verify for solution
accuracy. Note that the analytical solution is a series expansion and sufficient terms have to
included to get an accurate value. Here, 120 terms are considered (only the even orders have
a non-zero contribution).

• We are interested in the characteristics of the sound field in the fluid medium surrounding
the hemisphere - such as variation of sound pressure with distance, directivity, radiated sound
power, and efficiency.

• In this example, we use the HIE collocation method for the BEM solution. Note that the HIE
formulation is susceptible to the irregular frequency issue, which can be remedied using CHIEF
points. In a later example, we will use the Burton Miller collocation that uses a combination of
HIE and the normal derivative integral equation and yields accurate solution at all frequencies
without needing to use CHIEF points.

2 Model description

A hemisphere of radius a = 40mm, with its center at the origin and z-axis as the axis of symmetry
is set in an infinite rigid baffle (xy-plane). The radius of the hemisphere is chosen to be relatively
small, representative of a typical dome tweeter. The BE mesh of the hemisphere is shown in Figure 1.

We choose the following system of units for the Coustyx model: Length is in millimeter (mm),
Force is in Newton (N) and time is in seconds (s). Choose the millimeter - newton - second

option in the Edit Units dialog box. All other derived quantities are in terms of these primary units.
For example, sound pressure will be in N/mm2 or MPa, Sound Intensity in N/(mm · s) etc.

The fluid medium surrounding the sphere is air with sound speed c = 343m/s = 343, 000mm/s
and ambient density ρ0 = 1.21 kg/m3 = 1.21Ns2/m4 = 1.21e − 12Ns2/mm4. The characteristic
impedance of air Z0 = ρ0c = 4.1503e− 7Ns/mm3. The wavenumber at a frequency f is given as
k = ω/c = 2πf/c and has the units of 1/mm. As the hemisphere is small (radius = 40 mm), even
at high frequency the value of ka will be small. For example, At 20 KHz, ka = 2πf/c · a = 14.65,
and ka = 1 around 1365 Hz. At frequencies higher than 1365 Hz, we can expect the speaker to be
a good radiator.
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Figure 1: Boundary element mesh of a hemisphere with radius a = 40mm vibrating in a rigid baffle
plane.

A radial velocity distribution, ṽr on the hemisphere corresponding to the vertical rigid body
motion vz = va is given as,

ṽr(θ, φ) = va cos θ 0 ≤ θ ≤ π/2 (1)

In this example va was taken as 1 mm/s.

3 Boundary Conditions

a

�
d
�

asin�

va

vr

�

z

x

Figure 2: Schematic of the hemisphere in the baffle.

The sphere is vibrating with a radial velocity ṽr given by Equation 1. In Coustyx, this boundary
condition is applied as an “Nonuniform Normal Velocity” and is defined by script. The normal
velocity, vn = −ṽr, is the velocity in the direction of Domain Normal. Note that all boundary
conditions in a MultiDomain model are defined with respect to the Domain Normal, which always
points away from the domain of interest. For this example, as the exterior domain is our domain
of interest; the domain normal is pointing away from the exterior domain, into the sphere.

Another way to specify the velocity boundary condition is to use the Uniform Velocity option
to specify a uniform vector velocity. In this example, this is given given by the boundary condition
named Vector Velocity.

Both ways of creating the boundary condition are equivalent. The user must remember to apply

the boundary condition to the mesh elements. If a boundary condition is not applied to the elements,
they will have a default zero normal velocity boundary condition corresponding to a rigid boundary.

4 CHIEF points

In Direct BEM radiation problems, CHIEF (Combined Helmholtz Integration Equation Formulation)
points are used to eliminate large errors in the solution at certain frequencies which are the natural
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frequencies of the complementary interior problem. At these frequencies the Helmholtz equation
doesn’t yield a unique solution. We define a few arbitrary CHIEF points inside the sphere to addi-
tionally constrain the problem to obtain accurate solutions. Please note that when a CHIEF point
falls on an interior nodal surface it does not provide additional constraint effect at that frequency.
Hence, selection of good CHIEF points is crucial in obtaining accurate solutions at all frequencies.
One way to ensure this is to use the Auto Generate option in Coustyx to create CHIEF points at
random interior locations.

5 Analytical solution

5.1 Sound Pressure:

The first step in the solution procedure is to expand the applied radial velocity as a series of Legendre
polynomials Pm(cos θ). If we consider the radial velocity distribution over the full sphere, taking
into account the symmetry caused by the rigid baffle plane, it will be as follows:

vr(a, θ, φ) =

{

va cos θ 0 ≤ θ ≤ π/2
−va cos θ π/2 < θ ≤ π

(2)

As this is an even function over θ = π/2, only the Legendre polynomials of even degree contribute
to the expansion.

vr(a, θ, φ) =

∞
∑

m=0

VmPm(cos θ) (3)

The expression for the expansion coefficients Vm is found using the orthogonality properties of the
Legendre polynomials.

Vm =











0, m odd
va
2 , m = 0

−va

[

(m+1)
(2m+3)Pm+2(0) +

(2m+1)
(2m−1)(2m+3)Pm(0)− m

(2m−1)Pm−2(0)
]

, m 6= 0 even
(4)

The next step is to assume a solution as a series of elementary solutions each of which satisfies
the wave equation exactly.

p(r, θ, φ) =

∞
∑

m=0

Amhm(kr)Pm(cos θ) (5)

where hm are spherical Hankel functions of the first kind of order m. The unknown coefficients Am

are determined by equating the surface radial velocity from Equation 5 to the applied radial velocity
coefficients Vm.

∂p(r, θ, φ)

∂r
=

∞
∑

m=0

Amh′

m(kr)kPm(cos θ) (6)

In Equation 6 the prime in h′

m refers to the derivative of the Hankel function with respect to its
argument (namely, kr).

vr(r, θ, φ) =
1

ikZ0

∂p(r, θ, φ)

∂r
=

1

ikZ0

∞
∑

m=0

Amh′

m(kr)kPm(cos θ) (7)

The coefficients Am are determined by equating Equation 7 to the applied surface radial velocity
expansion Equation 3.

Am =
Vm(iZ0)

h′

m(ka)
(8)

Therefore, the expression for the pressure field is given as
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p(r, θ, φ) = (iZ0)

∞
∑

m=0

Vm

hm(kr)

h′

m(ka)
Pm(cos θ) (9)

Equation 9 is the primary equation for the pressure field. All the other acoustic quantities,
namely components of velocity, expressions for radiated and reactive power, and radiation efficiency
are derived from this.

5.2 Acoustic Particle Velocity:

The velocity field is related to the pressure gradient as follows:

~v =
1

ikZ0
∇p

=
1

ikZ0

(

∂p

∂r
êr +

1

r

∂p

∂θ
êθ +

1

r sin θ

∂p

∂φ
êφ

)

(10)

Therefore the radial component of velocity vr is given by

vr(r, θ, φ) =
1

ikZ0

∂p

∂r

=
1

ikZ0
(iZ0)

∞
∑

m=0

Vm

h′

m(kr)k

h′

m(ka)
Pm(cos θ)

=

∞
∑

m=0

Vm

h′

m(kr)

h′

m(ka)
Pm(cos θ) (11)

If we evaluate Equation 11 at r = a, it reduces to Equation 3, which is an additional check the that
the analytical solution as derived is correct. The polar component of velocity vθ is given by

vθ(r, θ, φ) =
1

ikZ0

1

r

∂p

∂θ

=
1

ikZ0

1

r
(iZ0)

∞
∑

m=0

Vm

hm(kr)

h′

m(ka)
P ′

m(cos θ)(− sin θ)

=
− sin θ

kr

∞
∑

m=0

Vm

hm(kr)

h′

m(ka)
P ′

m(cos θ) (12)

The azimuthal component of velocity vφ is given by Equation 13. It is zero as the problem is
axisymmetric.

vφ(r, θ, φ) =
1

ikZ0

1

r sin θ

∂p

∂φ

= 0 (13)

Coustyx has built in functions for Legendre polynomials and spherical Hankel functions of the first
kind. They are invoked as follows:

var Legendre_P_array = LegendreP(n,x);

The return value Legendre_P_array is an array of size n+1 containing P0(x), P1(x), . . . Pn(x).
Spherical Hankel functions of the first kind are obtained by using the function h1n.
var hn_kr = h1n(min_order, n_terms, kr);

The return value hn_kr is an array of size n_terms containing all the orders from min_order to
min_order+n_terms-1.

The following recurrence relations are used to compute the derivatives of the spherical Hankel
functions and Legendre polynomials. They are listed here, as some of the references have typos and
yield incorrect values as a result.

h′

n(z) = −hn+1(z) +
n

z
hn(z) (14)



http://www.ansol.com 5

P ′

m+1(x) = P ′

m−1(x) + (2m+ 1)Pm(x) (15)

5.3 Sound Power:

The time averaged radiated sound power Wa and the reactive power Wr are obtained by integrating
the active and reactive intensity on the surface of the sphere. Each term in the spherical harmonic
expansion radiates independently, and the cross terms evaluate to zero because of the orthogonality
property of the Legendre polynomials.

5.3.1 Radiated Sound Power Wa:

Wa =
1

2
ℜ

∫

pv∗rdS

=
1

2
ℜ

∫ ∞
∑

m=0

(iZ0) |Vm|
2 hm(ka)

h′

m(ka)
P 2
m(cos θ)dS

=
1

2
ℜ

(

iZ0

∞
∑

m=0

|Vm|2
hm(ka)

h′

m(ka)

∫

P 2
m(cos θ)dS

)

=
1

2
ℜ

(

iZ0

∞
∑

m=0

|Vm|
2 hm(ka)

h′

m(ka)

2πa2

2m+ 1

)

= πa2Z0

∞
∑

m=0

|Vm|
2

2m+ 1
ℜ

(

ihm(ka)

h′

m(ka)

)

(16)

5.3.2 Reactive Sound Power Wr:

Wa =
1

2
ℑ

∫

pv∗rdS

=
1

2
ℑ

∫ ∞
∑

m=0

(iZ0) |Vm|
2 hm(ka)

h′

m(ka)
P 2
m(cos θ)dS

=
1

2
ℑ

(

iZ0

∞
∑

m=0

|Vm|2
hm(ka)

h′

m(ka)

∫

P 2
m(cos θ)dS

)

=
1

2
ℑ

(

iZ0

∞
∑

m=0

|Vm|
2 hm(ka)

h′

m(ka)

2πa2

2m+ 1

)

= πa2Z0

∞
∑

m=0

|Vm|2

2m+ 1
ℑ

(

ihm(ka)

h′

m(ka)

)

(17)

5.3.3 Input Power Wi:

Wi =
1

2
Z0

∫

v2ndS

=
1

2
Z0

∫ π

2

0

v2a cos
2 θ 2πa2 sin θdθ

=
πa2Z0v

2
a

3
(18)



http://www.ansol.com 6

5.3.4 Radiation Efficiency σ:

σ =
Wa

Wi

(19)

6 Results and Validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an
analysis, such as frequency of analysis, solution method to be used, etc.

Before running an analysis sequence that has multiple frequency lines, a single frequency analysis
is run, as a sanity check. Once we have verified that the model runs without any issues and the
results make sense, we can run an analysis sequence that contains multiple frequencies. An example
of an analysis sequence with single frequency is Run Demo.

Here, an analysis sequence Run Demo is run. This runs the model at 1000 Hz. Field points are set
up along radial lines as shown in going from r = 100mm to r = 2000mm as shown in the Figure 3.
Two files sensors_demo.dat (Coustyx BEM) and sensors_analytical_demo.dat (Analytical So-
lution) are created during the run. The pressure and velocity data from these files are read into
Python numpy arrays using the read_sensor_file function, in the module process_coustyx__data
and plotted using the matplotlib library. This module also contains function read_power_file for
reading the sound power data generated by Coustyx.

From these runs the sensor data can be imported into Python as numpy arrays as follows:
frequencies,pressure,vx,vy,vz = read_sensor_file(r’sensors_validation_no_fmm.dat’)

Power data can be imported as follows:

frequencies, radiated_power, reactive_power, input_power, radiation_efficiency =

read_power_file(r’power_validation_no_fmm.dat’)
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Figure 3: Location of field points relative to the hemisphere.

Figure 4 shows how the pressure varies with increasing distance along the three lines from Fig-
ure 3. We can see that there is excellent agreement between Coustyx and the analytical solution
using maximum order of m = 120. There is very good agreement along Line 2 and Line 3 as well.
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The maximum percentage difference in field point sound pressure between the Coustyx solution and
the analytical solution was 0.27%. Each line in Figure 4 represents one frequency. The first five
frequencies from 500 Hz to 2500 Hz are shown. From Figure 4, a 1/r type of pressure variation with
distance is clearly observed.

500 1000 1500 2000
Radial distance, r (mm)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
es
s 
re
 M
ag
ni
t 
de
, N

/m
m

2

1e−7 Line 1

500 1000 1500 2000
Radial distance, r (mm)

0.0

0.2

0.4

0.6

0.8

1.0 1e−7 Line 2

500 1000 1500 2000
Radial distance, r (mm)

0.0

0.2

0.4

0.6

0.8

1.0 1e−7 Line 3

Figure 4: Sound pressure variation along the radial lines.

The z-component of acoustic particle velocity along Line 1 is plotted in Figure 5, and shows
excellent agreement, with a maximum difference of 0.28%.
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Figure 5: Vz variation along three radial lines.
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6.1 Directivity
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Figure 6: Sound pressure variation with polar angle θ at r = 1000mm. Frequency varies from 500 Hz
to 5000 Hz.

Figure 6 shows the directivity of the sound pressure from a hemispherical speaker in a rigid baffle.
Analysis was performed from 500 Hz to 20 KHz in 500 Hz increments. Only the first ten frequencies
are plotted in Figure 6. The blue line shows the analytical solution and the red line shows the
Coustyx BEM solution. Excellent agreement is observed.

At lower frequencies, the pressure distribution is uniform (spherical wave). At intermediate
frequencies, the pressure on the baffle plane is a little higher compared to the z-axis. At higher
frequencies, the sound pressure levels are higher along the z-axis, as expected.
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6.2 Sound Power
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Figure 7: Variation of radiated power, reactive power, input power and radiation efficiency with
frequency.

The acoustic variables related to sound power are plotted in Figure 7. There is a good agreement
between the Coustyx BEM solution (in red) and the analytical solution (in blue). As expected, at
higher frequencies, the speaker becomes more efficient with radiation efficiency σ approaching unity.
The minor discrepancies seen in the radiated sound power at a few frequencies are related to the
non-uniqueness or irregular frequency issue seen in Helmholtz BEM, remedied reasonably well by
using five CHIEF points.


