
Radiation from a Sphere with Spherical Harmonic Excitation

1 Introduction

The main objectives of this Demo Model are

• Demonstrate the ability of Coustyx to model the radiation problem of a sphere with spherical
harmonic excitation using a MultiDomain model.

• Demonstrate the ability of Coustyx to define complex boundary conditions using scripts.

• Define CHIEF points in the sphere interior to suppress large errors due to non-uniqueness issue
at eigen-frequencies of the corresponding interior problem.

• Validate Coustyx program by comparing the results from Coustyx to the analytical solutions.

2 Model description

We model a sphere of radius a = 1 m. The fluid medium around the sphere is air with sound speed
c = 343 m/s and mean density ρo = 1.21 kg/m3. The characteristic impedance of air Zo = ρoc =
415.03 Rayl. The wavenumber at a frequency ω is given as k = ω/c. The BE mesh of the sphere is
shown in Figure 1.

Figure 1: Boundary element mesh of a sphere with unit radius.

A radial velocity distribution, ṽr, represented by arbitrary spherical harmonics is applied on the
sphere,

ṽr(θ, φ) = −u0P
m
l (cos θ) cos(mφ) (1)

where Pm
l is the associated Legendre function of degree l = 4 and order m = 2, and u0 = 1 is a

scalar coefficient.

3 Boundary Conditions

The sphere is vibrating with a radial velocity ṽr given by spherical harmonics (see Equation 1). In
Coustyx, this boundary condition is applied as an “Nonuniform Normal Velocity” and is defined by
script. The normal velocity, vn = −ṽr, is the velocity in the direction of Domain Normal. Note that
all boundary conditions in a MultiDomain model are defined with respect to the Domain Normal,
which always points away from the domain of interest. For this example, the exterior domain is our
domain of interest; hence, domain normal is pointing away from the exterior domain, that is, it is
pointing into the sphere.
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4 CHIEF points

In Direct BEM radiation problems, CHIEF (Combined Helmholtz Integration Equation Formulation)
points are used to eliminate large errors in the solution at certain frequencies. These frequencies
are the eigen-frequencies of the corresponding interior problem. At these frequencies the Helmholtz
equation doesn’t yield a unique solution. We define a few arbitrary CHIEF points inside the sphere
to additionally constraint the problem and obtain accurate solutions. Please note that when a
CHIEF point falls on an interior nodal surface it provides no additional constraint effect. Hence,
selection of good CHIEF points is crucial in obtaining accurate solutions at all frequencies. One way
to ensure that is to define more than one CHIEF points at random locations inside the sphere.

5 Analytical solution

The exact solution to the Helmholtz equation in the exterior domain can be assumed to be of the
form

p(r, θ, φ) = Am
l u0P

m
l (cos θ) cos(mφ)h1

l (kr) (2)

where h1
l (kr) is the spherical Hankel function of the first kind of order l and Am

l is a constant
dependent on (l, m). We need to solve for Am

l to get analytical expression for pressure in the
exterior domain.
The pressure gradient in the radial direction on the surface of the sphere is

∂p

∂r
(r, θ, φ) = Am

l u0P
m
l (cos θ) cos(mφ)

[
kl(h1

l−1(kr)− h1
l+1(kr))− kh1

l+1(kr)
(2l + 1)

]
(3)

The specified radial velocity (ṽr) and the pressure gradient in the radial direction on the surface of
the sphere (r = a) are related and can be used to obtain Am

l , that is,

ṽr(θ, φ)(ikZ0) =
∂p

∂r
(a, θ, φ) (4)

Am
l =

−(ikZ0)(2l + 1)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

(5)

Thus, the analytical expression for pressure at any point (r, θ, φ) in the exterior domain is given by

p(r, θ, φ) =
[ −(ikZ0)(2l + 1)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
u0P

m
l (cos θ) cos(mφ)h1

l (kr) (6)

The velocity at the exterior point (r, θ, φ) is

−→v (r, θ, φ) = 1/(ikZ0)
−→∇p(r, θ, φ) (7)

vr(r, θ, φ) = −u0

[
klhl−1(kr)− klhl+1(kr)− khl+1(kr)
klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
Pm

l (cos θ) cos(mφ) (8)

vθ(r, θ, φ) = (1/r)u0

[
hl(kr)(2l + 1)

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

] [
lPl−1(cos θ)− l cos θPm

l (cos θ)
sin θ

]
cos(mφ)

(9)

vφ(r, θ, φ) = (m/r)u0

[
hl(kr)(2l + 1)

klhl−1(ka)− klhl+1(ka)− khl+1(ka)

]
Pm

l (cos θ)
sin θ

sin(mφ) (10)

where vr, vθ and vφ are the components of velocity in the spherical coordinate system.
The pressure and velocity in Cartesian coordinates can be obtained by applying the following trans-
formations:

r =
√

x2 + y2 + z2

θ = arccos(z/
√

x2 + y2 + z2), 0 ≤ θ ≤ π

φ = arctan(y/x), 0 ≤ φ ≤ 2π

(11)
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p(x, y, z) = p(r(x, y, z), θ(x, y, z), φ(x, y, z)) (12)

vx(x, y, z) =
x

r
vr +

xz

r
√

x2 + y2
vθ − y√

x2 + y2
vφ (13)

vy(x, y, z) =
y

r
vr +

yz

r
√

x2 + y2
vθ +

x√
x2 + y2

vφ (14)

vz(x, y, z) =
z

r
vr −

√
x2 + y2

r
vθ (15)

The pressure on the exterior surface of the sphere can be written in terms of the spherical harmonic
excitation on the exterior surface as

p(a, θ, ϕ) = f.(ikzo)vr(θ, ϕ) = (fr + ifi).(ikzo)vr(θ, ϕ) = (kzo)(−fi + fr)vr(θ, ϕ)

where the factor f = (fr + ifi) is

f =
(2l + 1)h1

l (ka)[
kl(h1

l−1(ka)− h1
l+1(ka))− kh1

l+1(ka)
]

Using the orthogonality of the associated Legendre functions, that is,

1∫

−1

[Pm
l (x)]2dx = 1

the integral over the norm of the radial velocity is reduced to
∫
S

|vr|2dS =
∫ ∫

u2
0[P

m
l (cos θ)]2[cos2 mφ]a2 sin θdθdϕ

= Cmπa2u2
0

where Cm = 1 for m 6= 0, and Cm = 2 for m = 0.
The analytical expression for the radiated power (W) due to spherical harmonic excitation on a
sphere is derived to be,

W = 1
2Re{∫

S

pv∗dS}
= − 1

2kzofi

∫
S

|vr|2dS

= −Cm
1
2kzofiπa2u2

0

(16)

where Cm = 1 for m 6= 0, and Cm = 2 for m = 0.
The radiation efficiency σ0 is given by,

σ0 =
W

1
2

∫
S

zov2
r(θ, ϕ)dS

= −kfi (17)

6 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Coustyx
MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an
analysis, such as frequency of analysis, solution method to be used, etc. In the demo model, the
analysis is performed for the frequency range ka = 0.2 to ka = 10 with a resolution ∆ = 0.2 using
the Fast Multipole Method (FMM) by running “Run Validation - FMM”. Coustyx analysis results,
along with the analytical solutions, are written to the output file “validation results fmm.txt”. The
results can be plotted using the matlab file “PlotResults.m”.
Coustyx uses Direct BE method to solve the radiation problem. In Direct BE method, the primary
variables are the pressure and the pressure gradient on the boundary. Radiated sound power is then
computed at all frequencies.
Figure 2 shows comparisons of radiated sound power computed from both Coustyx and analytical
methods for ka = 0.2 to ka = 10. The comparisons show very good agreement between the two
methods. From the Figure 2 one can see that errors due to non-uniqueness problem at ka = 5.6
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and ka = 9.8 are suppressed in Coustyx solution due to the use of CHIEF points. The existence of
the non-uniqueness problem at these frequencies can be verified by deleting all CHIEF points and
running the analysis once again.
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Figure 2: Radiated sound power comparisons for a sphere with spherical harmonic excitation.


