1 Introduction

The main objectives of this Demo Model are

- Demonstrate the ability of Coustyx to model the scattering of a plane wave by a soft sphere using MultiDomain model. A soft sphere has zero surface pressure.
- Derive analytical solution.
- Validate Coustyx software by comparing Coustyx results to the analytical solutions.

2 Model description

We model a sphere of radius $a = 1$ m. The fluid medium surrounding the sphere is air with sound speed $c = 343$ m/s and mean density $\rho_0 = 1.21$ kg/m3. The characteristic impedance of air $Z_0 = \rho_0 c = 415.03$ Rayl. The wavenumber at a frequency ω is given as $k = \omega/c$. A plane wave of amplitude $p_0 = 1$ propagating in the direction of $+z$ direction is scattered by the soft sphere centered at the origin $(0, 0, 0)$. The soft sphere has zero surface pressure. The sphere in the presence of the plane wave is shown in Figure 1.

![Figure 1: Acoustic problem description.](image)

3 Boundary Conditions

In Coustyx MultiDomain model, the soft boundary condition on the sphere is applied using “Uniform Pressure” type with zero amplitude.

The plane wave source is introduced in the Coustyx model by defining a new acoustic source of “Plane Wave” type of amplitude $p_0 = 1$, with origin at $(0, 0, 0)$ and direction $(0, 0, 1)$.

4 Analytical solution

An incident plane wave of amplitude p_0 traveling in $+z$ direction is given by

$$p_{inc} = p_0 e^{ikz}$$ \hspace{1cm} (1)
The plane wave is impinging on the soft sphere centered at the origin. This plane wave can be represented as a series of spherical harmonics as follows (refer [1]),

\[p_{\text{inc}} = p_o \sum_{l=0}^{N} (2l + 1)j_l(kr)P_l(\cos \theta) \]

(2)

where \(j_l \) is the spherical Bessel function, \(P_l \) is the Legendre function of order \(l \), and \(i = \sqrt{-1} \).

Assume \(p_{\text{scattered}} \) is the scattered sound pressure by the sphere. The function \(p_{\text{scattered}} \) should be selected such that it satisfies both the Helmholtz wave equation and the Sommerfeld radiation condition. Hence, the scattered wave can be represented as follows,

\[p_{\text{scattered}} = \sum_{l=0}^{N} A_l h_l(kr)P_l(\cos \theta) \]

(3)

where \(h_l \) is the spherical Hankel function of the first kind of order \(l \), \(A_l \) is the coefficient of interest.

The coefficient \(A_l \) is determined from setting the pressure of the scattered wave on the sphere surface to be opposite of the pressure of the incident wave on the surface of the sphere, so that the total pressure on the sphere surface is zero (zero pressure boundary condition). That is,

\[p_{\text{inc}} + p_{\text{scattered}} = 0, \text{ at } r = a \]

(4)

Therefore,

\[A_l = -p_o(2l + 1)\frac{j_l(ka)}{h_l(ka)} \]

(5)

The total sound pressure at any field point is the sum of the incident and scattered pressures,

\[p_{\text{total}} = p_{\text{inc}} + p_{\text{scattered}} \]

(6)

5 Results and validation

Acoustic analysis is carried out by running one of the Analysis Sequences defined in the Constyx MultiDomain model. An Analysis Sequence stores all the parameters required to carry out an analysis, such as frequency of analysis, solution method to be used, etc. In this Demo Model, the analysis is performed at a frequency \(f = 54.59 \text{Hz} \) (that is, \(ka = 1 \)) using the Fast Multipole Method (FMM) by running “Run Validation - FMM”. Constyx analysis results, along with the analytical solutions, are written to the output file “validation_results_fmm.txt”. The results can be plotted using the matlab file “PlotResults.m”.

Constyx uses Direct BE method to solve the acoustic problem. In Direct BE method, the primary variables are the pressure and the pressure gradient on the boundary. Field point solutions are then computed from the surface solutions.

Figure 2 shows angular distribution of the field point pressure amplitudes at \(r = 1.5 \) computed from both Constyx and analytical methods for different values of \(ka \). The quantities are plotted versus the polar angle \(\theta \). \(\theta = 180^\circ \) corresponds to the front end and \(\theta = 0^\circ \) corresponds to the back end of the sphere with respect to the impinging plane wave. The comparisons between the solutions computed from Constyx and analytical expressions show very good agreement. Figure 2 shows how the scattering pattern changes with changes in \(ka \) (= 0.1, 1, 2, 4).
Figure 2: Angular distribution of total field point pressure amplitudes at $r = 1.5a$ due to a plane wave scattered by a soft sphere of radius a from Coustyx and analytical methods. The incident wave pressure amplitude p_o is also plotted for reference. The quantities are plotted versus the polar angle θ for different values of ka.

References