
Dissipative Duct

1 Introduction

This example demonstrates the propagation of sound in a dissipative acoustic waveguide. A duct
with a square cross-section is considered. The side walls are lined with a locally reacting sound
absorbing material of impedance Zw. Using this example, several interesting physical phenomena
that occur in waveguides such as dispersion, cutoff frequencies of the various transverse modes, and
attenuation of sound etc. are explained. Analytical solution is derived and compared with Coustyx
solutions. Excellent agreement is observed.
This example makes extensive use of the scripting feature of Coustyx to model side wall impedance
that varies with frequency, and in functions for computing the transverse eigenvalues for use in the
analytical solution.
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Figure 1: An acoustically lined duct of rectangular cross-section.

2 Problem Statement

A schematic of the dissipative duct is shown in Figure 1. The face at z = 0 is oscillates back and
forth at a frequency ω, and a velocity amplitude U . At z = lz, an anechoic termination boundary
condition is applied. The duct is lined on all four sides with a 1-inch thick foam with a rigid backing.
The excitation frequency f = 1000 Hz, and the duct dimensions are 10 cm x 10 cm x 60 cm. The
fluid medium inside the duct is air with a sound speed of c = 343m/s and an ambient density of
ρ = 1.21 Kg/m3. We are interested in the sound field inside the duct.
The real and imaginary parts of the normalized impedance Zw(ω)/ρc = R(ω)/ρc + iX(ω)/ρc of
1-inch thick foam with a rigid wall backing is obtained experimentally [1], and plotted in Figure 2.
From Figure 2, it is seen that the real part of impedance R(ω) (called resistance) is always positive,
as required for an energy absorber. Also, as noted in Pierce [2], typical acoustic liners are stiffness-
controlled at low frequencies, and the acoustic reactance X(ω) is large and positive for small ω. This
can be observed in Figure 2 as well.
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Figure 2: Normalized impedance of 1-inch thick foam with a rigid wall backing.

3 Analytical Solution

Our derivation of the analytical solution is similar to that of Munjal [3]. Our version differs from
Munjal [3] with respect to the choice of the origin for the coordinate system. In our opinion choosing
the center line of the duct to be (0,0) simplifies the presentation greatly, and the symmetric and
anti-symmetric modes are very easily identifiable.
Employing the separation of variables, we look for a solutions of the form

p(x, y, z) =
{
eikxx + c1e

−ikxx
}{

eikyy + c2e
−ikyy

}{
eikzz + c3e

−ikzz
}

(1)

The expressions for the pressure gradient are given by the following equations.

∂p

∂x
(x, y, z) = ikx

{
eikxx − c1e

−ikxx
}{

eikyy + c2e
−ikyy

}{
eikzz + c3e

−ikzz
}

(2)

∂p

∂y
(x, y, z) = iky

{
eikxx + c1e

−ikxx
}{

eikyy − c2e
−ikyy

}{
eikzz + c3e

−ikzz
}

(3)

∂p

∂z
(x, y, z) = ikz

{
eikxx + c1e

−ikxx
}{

eikyy + c2e
−ikyy

}{
eikzz − c3e

−ikzz
}

(4)

Euler’s equation relates the acoustic particle velocity to the pressure gradient as follows:

ux(x, y, z) = 1
ikZo

∂p
∂x (x, y, z); uy(x, y, z) = 1

ikZo

∂p
∂y (x, y, z); uz(x, y, z) = 1

ikZo

∂p
∂z (x, y, z) (5)

The solution procedure is as follows: First the the transverse wavenumber kx and coefficient c1 are
determined by satisfying the boundary conditions on faces x = −a/2 and x = a/2. The transverse
wavenumber ky is similarly determined. Once kx and ky are known, the value of propagation

wavenumber kz is given by kz =
√

k2 − k2
x − k2

y.

3.1 Determination of Transverse Eigenmodes

The impedance boundary condition on the face x = a/2 yields

p(a
2 , y, z)

ux(a
2 , y, z)

= Zw (6)

2



This leads to

eikx
a
2 + c1e

−ikx
a
2

eikx
a
2 − c1e−ikx

a
2

=
kx

k

Zw

Zo
(7)

The boundary condition on the face x = −a/2 yields

p(−a
2 , y, z)

−ux(−a
2 , y, z)

= Zw (8)

The negative sign for the velocity term in Equation 8 can be explained using the schematic in
Figure 2. The convention followed for measuring impedance uses the component of velocity going
into the acoustic liner, which is −ux in this case.
Equation 8 simplifies to

e−ikx
a
2 + c1e

ikx
a
2

e−ikx
a
2 − c1eikx

a
2

= −kx

k

Zw

Zo
(9)

Let
A = eikx

a
2 ; B = e−ikx

a
2 ; R = kx

k
Zw

Zo
(10)

Equation 7 simplifies to
A + c1B

A− c1B
= R (11)

and Equation 9 simplifies to
B + c1A

B − c1A
= −R (12)

Solving Equation 11 and Equation 12 for c1 yields c1 = ±1. c1 = 1 yields symmetric transverse modes
in the x-direction as the pressure variation

{
eikxx + e−ikxx

}
is symmetric about x = 0. Similarly

c1 = −1 yields anti-symmetric modes about x = 0 since the pressure variation
{
eikxx − e−ikxx

}
is

an odd function.
The next step is the determination of the eigenvalues (kxa/2) for the transverse symmetric and
anti-symmetric modes.

3.1.1 Eigenvalues of Transverse Symmetric Modes

Solving Equation 7, given c1 = 1 leads to the following transcendental equation for determination
of the eigenvalue kxa/2.

eikx
a
2 + e−ikx

a
2

eikx
a
2 − e−ikx

a
2

=
kx

k

Zw

Zo
(13)

cot(
kxa

2
) = i

kx

k

Zw

Zo
(14)

cot(kxa
2 )

kxa
2

= i
2
ka

Zw

Zo
(15)

Equation 15 is solved using iterative techniques, such as the Newton-Raphson method to determine
the symmetric eigenvalues kxa/2.

3.1.2 Eigenvalues of Transverse Anti-Symmetric Modes

Solving Equation 7, given c1 = −1 yields the eigenvalues for the anti-symmetric modes.

eikx
a
2 − e−ikx

a
2

eikx
a
2 + e−ikx

a
2

=
kx

k

Zw

Zo
(16)

i tan(
kxa

2
) =

kx

k

Zw

Zo
(17)

tan(kxa
2 )

kxa
2

= −i
2
ka

Zw

Zo
(18)

The following observations can be made from Equation 15 and Equation 18.
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• If Zw were purely reactive, the right hand sides of Equation 15 and Equation 18 are real valued,
and hence the eigenvalue kxa/2 will be real. In this case, kz =

√
k2 − k2

x − k2
y will be either

real or purely imaginary.

For a real valued kz we have wave traveling down the duct without any attenuation, while
purely imaginary kz corresponds to the case where the excitation frequency is below the cutoff
frequency for the given transverse mode, and thus leads to an evanescent wave. Thus a pipe
with yielding walls, where Zw is purely reactive as it is stiffness controlled, will not cause any
attenuation.

• The eigenvalues kxa/2 are dependent on the excitation frequency, as the wavenumber k is
explicitly present of the right hand side of the eigenvalue equations. Hence in a multi-frequency
analysis, the eigenvalues need to be recomputed for every analysis frequency.

• The convergence of the iterative techniques for solving the eigenvalue equations (Equation 15
and Equation 18) depends heavily on the choice of a good initial guess. Initial guesses that
are not sufficiently close to the solution cause the eigenvalue solver to diverge. Using initial
guesses that correspond to the transverse eigenvalues with rigid walls (Zw = ∞) with a small
negative imaginary part, seems to work well.
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Figure 3: Transverse eigenvalues and modes for the square duct at a frequency of f = 1000Hz.

Figure 3 shows the symmetric and anti-symmetric eigenvalues distributed in the complex plane. The
mode shapes associated with an eigenvalue are plotted near it. The computed eigenvalues for the
given side-wall impedance Zw are close to the ones for a rigid walled duct, especially for the higher
eigenvalues.
Table 1 shows the eigenvalues kx,ma/2 and transverse wavenumbers kx,m for the first sixteen modes
(m = 0, . . . 15). In Table 1, the index m represents the number of nodal points for the sound pressure
mode shape in the x-direction.
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Table 1: Transverse eigenvalues and wavenumbers kx,m at 1000Hz.

m <(kx,ma/2) =(kx,ma/2) <(kx,m) =(kx,m)
0 0.082 -0.753 1.64 -15.07
1 1.193 -0.091 23.868 -1.814
2 2.983 -0.031 59.657 -0.615
3 4.609 -0.02 92.182 -0.391
4 6.206 -0.014 124.127 -0.289
5 7.793 -0.011 155.854 -0.23
6 9.374 -0.01 187.477 -0.191
7 10.952 -8e-3 219.04 -0.163
8 12.528 -7e-3 250.564 -0.143
9 14.103 -6e-3 282.066 -0.127
10 15.678 -6e-3 313.55 -0.114
11 17.251 -5e-3 345.022 -0.103
12 18.824 -5e-3 376.484 -0.095
13 20.397 -4e-3 407.938 -0.087
14 21.969 -4e-3 439.388 -0.081
15 23.542 -4e-3 470.832 -0.076

Each transverse mode (m,n) propagates down the duct at a propagation wavenumber kz,m,n given

by kz,m,n =
√

k2 − k2
x,m − k2

y,n. The propagation wavenumbers for the first five transverse mode
combinations is shown in Table 2. The imaginary part of kz,m,n is responsible for the attenuation of
the wave amplitude. This is the basic working principle behind dissipative mufflers.
From Table 2 it seen except for (0,0), (1,0) and (0,1) modes, all the other modes have very high
attenuation rates and decay rapidly. If the duct were to be lined with rigid walls, the excitation
frequency of f = 1000 Hz is below the cutoff frequency for the higher order modes, leading to
evanescent waves.

Table 2: Propagation wavenumbers kz,m,n for various transverse modes at f = 1000 Hz.

m,n n = 0 n = 1 n = 2 n = 3 n = 4
< = < = < = < = < =

m = 0 28.06 1.76 8.05 8.44 1.12 54.77 0.68 89.09 0.50 121.85
m = 1 8.05 8.44 3.05 28.40 1.30 61.57 0.85 93.43 0.63 125.05
m = 2 1.12 54.77 1.30 61.57 0.89 82.35 0.67 108.26 0.53 136.49
m = 3 0.68 89.09 0.85 93.43 0.67 108.26 0.56 129.07 0.47 153.52
m = 4 0.50 121.85 0.63 125.05 0.53 136.49 0.47 153.52 0.41 174.58

Modes (1,0) and (0,1) are anti-symmetric modes. They will not be excited by the specified velocity
distribution at z = 0, which is uniform. Hence the mode (0,0), the first symmetric mode is also the
least attenuated mode, and hence the dominant mode in the response.
From the above discussion, it is clear that a very good approximation can be obtained using a one
term eigensolution.

p(x, y, z) = C
{
eikx,0x + e−ikx,0x

}{
eiky,0y + e−iky,0y

}
eikz,0,0z (19)

uz(x, y, z) =
1

ikZo

∂p

∂z
(x, y, z) = C

1
Zo

kz,0,0

k

{
eikx,0x + e−ikx,0x

}{
eiky,0y + e−iky,0y

}
eikz,0,0z (20)

The unknown coefficient C is determined to satisfy the velocity boundary condition at z = 0. Instead
of satisfying the velocity boundary condition point-wise at z = 0, the coefficient C is determined by
matching the volume velocity from Equation 20 to that from the prescribed boundary condition.

Ua2 = Ca2 1
Zo

kz,0,0

k
4

(
sin kx,0a

2
kx,0a

2

)2

(21)
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The expression for the pressure field inside the duct is given by

p(x, y, z) =
UZo

4
k

kz,0,0

(
kx,0a

2

sin kx,0a
2

)2 {
eikx,0x + e−ikx,0x

}{
eiky,0y + e−iky,0y

}
eikz,0,0z (22)

p(x, y, z) = UZo
k

kz,0,0

(
kx,0a

2

sin kx,0a
2

)2

cos (kx,0x) cos (ky,0y) eikz,0,0z (23)

Equation 23 is the analytical solution for the pressure field inside the duct using a one term modal
summation (first symmetric mode).
Two observations can be made from Equation 23.

1. The variation of sound pressure at a given z is of the the form cos (kx,0x) cos (ky,0y). Since
the first transverse eigenvalue kx,0a/2 is such that <(kx,0a/2) ≈ 0, cos(kx,0a/2) ≈ 1. Hence,
at any cross-section, the maximum sound pressure occurs at a corner.

2. The excitation starting out as a plane-wave at z = 0, takes the shape of the first symmetric
mode as it travels along the duct, due to rapid attenuation of the higher order modes.

Equation 23 is used for comparisons with the numerical solution from Coustyx.

3.1.3 Termination Condition

At the end Z = lz, an anechoic termination boundary condition is desired. Modeling the end
impedance as the medium characteristic impedance Z0 = ρc would be an approximation that is valid
only at high frequency, due to the dispersion characteristics of the waveguide, since cphase = kz/ω =
cphase(ω). A more precise way of modeling the anechoic termination boundary condition is to use
Equation 23 directly, and compute the ratio of pressure to velocity. This is given as

p(x, y, z)
uz(x, y, z)

= Zo
k

kz,0,0
(24)

Equation 24 is applied as the boundary condition in the Coustyx model z = lz using the Coustyx
scripting feature, as the right hand side of Equation 24 is frequency dependent.

4 Coustyx Model

The Coustyx model of the 10 cm x 10 cm x 60 cm duct contains 2600 linear elements, 2602 coordinate
nodes, 2602 pressure nodes, and 2926 pn nodes. The element size is 1 cm x 1 cm. Using the λ/6
thumb rule for element size, the boundary element model is valid till a frequency of 5053 Hz. The
number of pn variable nodes is different from the number of pressure nodes due to the duplication
of the pn nodes at the edges and corners of the duct where the element normals are discontinuous.
The fluid medium in the duct is air with sound speed c = 343 m/s and mean density ρ = 1.21 kg/m3.
The characteristic impedance of air Zo = ρc = 415.03 Rayl.
We apply an uniform velocity boundary condition of amplitude U = 1m/s at z = 0, at a frequency
f = 1000Hz. Anechoic termination boundary condition as given by Equation 24 is applied at z = lz,
and the frequency dependent acoustic liner impedance on the side walls of the duct. Modeling of
the boundary conditions is made very easy by the advanced scripting capabilities of Coustyx.
The Context Script contains functions for computing the impedance of the acoustic liner at any
frequency, and analytical solutions for the sound pressure and velocity. Functions that are placed in
the Context Script have a global scope, and can be used inside any Analysis Sequence.
Using this example, we are interested in learning about the characteristics of dissipative waveguides,
and demonstrating the accuracy of the Coustyx solution in comparison with the analytical solution.

5 Results and Discussion

Analysis is carried out by running the Analysis Sequences defined in the Coustyx model named Run
Validation - FMM . An Analysis Sequence stores all the user inputs specified for an analysis, such
as boundary integral formulation type, frequency range and spacing, solution method, along with
various requested outputs.
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The results from Coustyx analysis, and the analytical solutions, are written to the output files
validation results fmm.txt, face center results fmm.txt, corner results fmm.txt for plot-
ting using external tools.
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Figure 4: Variation of sound pressure with distance along the z-axis.

Figure 4 shows the variation of the sound pressure along the duct center line. The apparent wave-
length in the z-direction from Figure 4 is 0.227m that corresponds precisely to the real part of the
propagation wavenumber kz,0,0 = 28.06 + i1.76 from the analytical solution as 2π/kz,0,0 = 0.223.
This result is very interesting, as the Coustyx solution was not in any way predisposed to yield
this, and the surface point source distributions from the BEM solution all radiate fields with eikr

spatial variation, where the wavenumber k = ω/c = 18.32. For the case of the rigid side walls the
wavelength in the z-direction would have been 0.343m. So the apparent wavelength is shorter when
the duct is lined with an absorbing material. From Figure 4, it is seen that the Coustyx solution is
compares very well with the analytical solution, for all z
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Figure 5: Magnitude of the normalized sound pressure at various points on the duct cross-section.
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The sound pressure at three points on the cross-section namely – a corner point, a point on the face
center, and a point on the duct axis is plotted in Figure 5. The y-axis on the graph is in log scale.
From the Figure 5, it is seen that all the three curves are parallel, corresponding to an exponentially
decaying variation with same attenuation rate but different starting values. Also the sound pressure
level at the corner is maximum, as predicted earlier from the analytical solution.
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