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Modeling coupling between multiple acoustic domains interacting through elastic 

structures is important in many applications. For example, prediction of the noise 

transmitted from the exterior to the vehicle interior through window panels requires a fully 

coupled analysis of the exterior and interior acoustic fields along with the window panel 

vibration. Coupled acoustic-structure interaction problems have been historically studied; 

however, analytical solutions are available only for ideal geometries such as sphere, cube, 

and plate. For complicated geometries given arbitrary boundaries, numerical methods 

must be utilized. Despite significant work done in the recent past, there are still many 

challenges. For instance, how do we extend these numerical methods to models of larger 

dimensions, higher frequency regimes, and multiple acoustic domains?  

 In this paper, a fully coupled formulation that can efficiently handle multiple acoustic 

domains and elastic structures will be proposed. We use the Fast Multipole boundary 

element method (BEM) to model acoustic domains and the finite element method (FEM) to 

model the elastic structures; the Fast Multipole BEM is very attractive and a faster method 

to analyze ultra large acoustic models that are valid at mid to high frequency regimes. 

Further, we employ invacuo structural modes to reduce the FEM model. The coupled 

system of equations for the acoustic fields in multiple domains and the structure vibration 

are simultaneously solved. Examples of real-life applications such as noise transmission 

through vehicle window panels, etc., are discussed. The proposed methods could be 

extended to other applications that require a fully coupled analysis such as exhaust pipe 

shell radiation, acoustic pressure loading on aerospace vehicles, noise transmission between 

coupled rooms, etc. 

                                                 
a)

 email:  vijay.ambarisha@ansol.com 

 

1 INTRODUCTION 

 

 For many vibrating structures the acoustic loading is weak, and hence the structural 

vibration motions are not affected. However for some thin elastic structures, structures with 

closed acoustic spaces, or structures submerged in dense fluids, the acoustic loading is 

sufficiently significant to influence the structure motion. This may be viewed as a feedback 



coupling path between the acoustic pressure and the structure vibration. Thus the governing 

equations for the structure vibrations and acoustic wave equations must be simultaneously 

solved. Moreover in some applications noise generated in one acoustic domain is transmitted to 

another acoustic domain through an elastic structure, introducing feedback coupling between the 

two acoustic domains. In such cases it is important to model both acoustic domains and the 

coupling with the interacting structure. For example, the sound transmission through a thin 

impervious wall between two rooms can only be modeled by considering the coupling between 

the two acoustic domains and the wall.  

 Coupled acoustic-structure interaction problems have been historically studied; however, 

closed form analytical solutions are available only for ideal geometries such as sphere, cylinder, 

rectangular box, plates, etc
1-2

. For more complicated geometries and arbitrary boundary 

conditions numerical methods must be utilized. Due to its intrinsic advantages, Boundary 

Element Method (BEM) is widely used for modeling acoustic problems, whereas Finite Element 

Method (FEM) is quite popular for modeling structure vibrations. In this paper we present a 

coupled BEM-FEM formulation to model strongly coupled vibro-acoustic problems. The 

structural FEM model is further simplified with the use of invacuo modes. The BEM calculations 

are accelerated by Fast Multipole Method (FMM). The FMM enables fast matrix-vector 

computations, and when employed with iterative methods, produces rapid solutions. In recent 

years the emergence of FMM-BEM for acoustic analysis has dramatically shifted the utility of 

BEM for small low frequency models to ultra large models valid for mid-high frequency 

regimes. 

 

2 COUPLED BOUNDARY ELEMENT AND FINITE ELEMENT FORMULATION 

 

 The boundary element method is used to formulate the acoustics problem and finite element 

method is used to formulate the structure vibrations. For coupled systems, the unknown acoustic 

pressure on the surface in the BEM model acts as a loading on the structure in the FEM model 

and the unknown structure vibration in the FEM model acts as the excitation for the BEM model. 

Thus we obtain a fully coupled formulation as described below.  

 

2.1 Single Acoustic Domain Coupled to a Structure 

 

In this formulation a single acoustic domain is assumed to be coupled with an elastic 

structure. The Kirchhoff-Helmholtz integral equation over the boundary surface S of a radiating 

structure is given by,  
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are the pressure and pressure gradient at point P on the surface, 

 is the density of the medium,  is the frequency of analysis in rad/sec, nv is the normal 

velocity, and )1(j , )(PC is proportional to the solid angle at P, ),( QPG is the free-space 

Greens function, and incp  is the incident pressure on the boundary due to acoustic sources. The 

boundary conditions applied to the surface S can be any combination of velocity (Sv), pressure 

(Sp), impedance (Sz), and acoustic-structure coupling (Sc), as shown in Fig. 1. However, for 



simplicity we discuss the case with only the coupled acoustic-structural boundary condition 

(S=Sc). Note that we follow the tje  convention throughout this paper, but it is dropped for the 

sake of brevity.  

 

 

 
 

Fig. 1 – Coupled formulation with a two-way acoustic-structural coupling (Sc) and other 

possible boundary conditions. 

 

 

 Discretization of the surface of the radiator into boundary elements and assembling 

equations for all collocation points, the integral Eqn. (1) produces a system of equations 
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where A and r are the left-hand side matrix, and right-hand side vectors, p is the vector of 

unknown pressures at collocation points, and p
inc

 is the vector with incident pressures due to 

acoustic sources. The right-hand side vector r depends on the structure velocity, v, and is further 

reduced using modal superposition Φv j ,    

 

                                                       RΦRvr 2 j                                                      (3) 

 

The rectangular matrix R relates collocation points to the structure nodes; Φ  is the structure 

invacuo modal matrix;   is vector of modal coefficients. For coupled acoustic-structural 

problems   is unknown and needs to be solved simultaneously with p. The final system of 

equations representing the BEM acoustic domain is  

 

                                                         incpRΦAp  2                                                         (4) 

 

Finite element method is used to formulate structure vibrations. The system of equations 

modeling structure vibrations in the frequency domain is given by 
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where M, C and K are finite element mass, damping, and stiffness matrices, respectively, 

Φu  is the displacement vector, f
a
 is the acoustic loading, and f

s
 is the external loading on the 

structure. We assume that the invacuo structure modes Φ  are ortho-normalized with respect to 

the mass matrix. Thus, 
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Equation (5) reduces to 

 

                                                      sTaT fΦfΦZ                                                            (7) 

 

where 

 

 2ΩΛIZ   j2  

 

Z is a diagonal matrix and hence easy to invert. The acoustic loading f
a
 is related to acoustic 

pressures p on the surface by a matrix Q.  

 

                                                            Qpf a                                                                       (8) 

 

 To solve the coupled acoustic-structural problem, we combine Eqn. (4) and Eqn. (7) to form 

the fully coupled system of equations.  
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Typically, iterative methods are used to solve Eqn. (9) for the pressure (p) and modal 

coefficients ( ) simultaneously. Due to the scaling difference between the acoustic and elastic 

domains the left-hand side matrix is not well conditioned and results in poor convergence. 

Hence, we eliminate   from Eqn. (9) to obtain system of equations in only one variable p as  
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 Equation (10) could be interpreted as a boundary element formulation similar to Eqn. (2) 

with additional terms for coupling with the structure. Iterative methods in conjunction with FMM 

are used to efficiently solve for p. The modal coefficient vector   is then computed from Eqn. 

(7).  

 

2.2 Accelerating Computations using Fast Multipole Method 

 

 The fast multipole method offers an efficient way of computing matrix-vector products for 

matrices having special structure. All BEM matrices from the above formulation have this 



special structure due to the presence of Greens function or its derivatives and hence can take 

advantage of FMM. FMM, when used in conjunction with iterative methods from the Krylov 

family, results in rapid solutions. A multi level fast multipole method (MLFMM) as described by 

Gunda and Vijayakar
3
 is used to accelerate BEM computations. 

 In Eqn. (10), A is a matrix generated from the BEM formulation and hence the matrix-vector 

product Ap could be sped up using FMM straight away. The coupled term in the left-hand side 

involves many matrix-matrix products and looks like a potential bottle neck. However, many of 

these computations are easy to perform except the matrix-vector product involving R which is 

fully populated and frequency dependent. For example, the matrix-matrix product involvingΦ  

and Q is frequency invariant and is required to be evaluated only once per analysis. More over 

the matrix Z is diagonal and the matrix Q is sparsely populated. To accelerate computations 

involving R matrix we take advantage of its structure, which contains Greens function, and 

employ FMM.  

 

2.3 Multiple Acoustic Domains Coupled through a Structure 

 

 The formulation for the single acoustic domain can be extended to consider multiple 

acoustic domains coupled to the same structure. Figure 2 shows two acoustic domains enclosed 

by surfaces S1+Sc and S2+Sc. The two domains are coupled to the structure at Sc. Assuming that 

the two domains are coupled only through the structure and not by any other means; the system 

of equations can be written as 
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where subscripts 1 and 2 represent different acoustic domains. Rewriting Eqn. (9) by eliminating 

  we obtain  
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Fig. 2 – Two acoustic domains coupled to the same vibrating structure. 

 



3 CASE STUDY 

 

3.1 Validation: Rectangular panel backed by a closed cavity 

 

In this example, the coupling between an elastic rectangular panel and the acoustic cavity 

backing it is analyzed. Our formulation is validated by comparing with the analytical series 

solution derived by Pretlove
2
. A schematic of the model with the boundary element mesh is 

shown in Fig. 3. The cavity has dimensions of 1 m x 1 m x 1 m and is backed by the elastic panel 

on one side and rigid walls on others. The panel has a thickness of 1 cm and is assumed to be 

made of steel with Young’s modulus E = 210 GPa, density ρs = 7900 kg/m
3
, and Poisson’s ratio 

ν = 0.3. The fluid medium inside the cavity is assumed to be water with a sound speed c = 1481 

m/s and density ρw = 1000 kg/m
3
. As the analytical series solution derived by Pretlove assumes 

only coupling between the elastic panel and the cavity, we neglect the exterior domain and model 

only the interior acoustic domain for this study.  

 

 

 
       

(a) (b) 

 

Fig. 3 – Elastic panel (in red) backed by cavity; (a) schematic with driving force shown, and (b) 

boundary element mesh. 

 

 

Invacuo structural modes of the panel for simply supported boundary conditions are 

computed using finite element software and are used to model the structure in our coupled 

formulation. The first six modal frequencies from FEA are compared to analytical expressions in 

Table 1. The corresponding invacuo structural mode shapes are shown in Fig. 4.  

A unit force is applied on the panel at (0.2, 0.3) and the driving point displacement from our 

formulation is compared with the analytical solution in Fig. 5. Excellent agreement is found 

between results from our formulation and the analytical solution. The discrepancy in the 

magnitudes of the response at resonant frequencies is due to the fact that our formulation 

requires structural damping for proper convergence and the analytical solution does not include 

any damping. We note that the structural resonant frequencies for the coupled system are 

different from the invacuo structural modal frequencies due to the cavity loading. For modes 

with nonzero average flux the cavity has an added stiffness effect and hence shifts the 



corresponding resonances to higher frequencies, whereas for modes with zero average flux the 

cavity has an added mass effect and hence shifts the resonances to lower frequencies. 

 

 

Table 1 – Invacuo natural frequencies of a plate with simple supports. 

 

Mode (r,s) Analytical (Hz) FEA (Hz) 

(1,1) 49.0 49.0 

(1,2) 122.5 122.4 

(2,1) 122.5 122.4 

(2,2) 196.1 195.8 

(1,3) 245.1 244.7 

(3,1) 245.1 244.7 

 

 

 

 
Fig. 4 – Invacuo mode shapes for the first six vibration modes of a plate with simple supports. 

 



 
Fig. 5 – Driving point frequency response of the elastic panel coupled to the cavity. Structural 

modes corresponding to each resonant peak are also shown. Damping is added to the 

structure in the Coupled BEM-FEM Formulation to ensure the solution convergence but 

no damping is considered in the Analytical Solution.  

 

3.2 Exterior noise transmission to car interior through a window panel 

 

 In this example, we examine the exterior air borne noise transmission to the interior of a car 

through a window panel. The exterior noise excites the window panel that is coupled to the 

interior acoustic cavity. Hence a fully coupled model involving both the interior and exterior 

acoustic domains along with the window panel structure is necessary to analyze this system. 

Figure 6 shows a detailed model of the car exterior and the interior along with the window panel. 

The car exterior model has dimensions of approximately 4.7 m x 2 m x 1.3 m and the 

corresponding BE mesh has around 600,000 elements. The car interior including interior walls, 

seats, and driver’s head is modeled with around 70,000 boundary elements. For this study, only 

the driver’s side window panel is assumed to be flexible and hence coupled to the exterior and 

interior acoustic domains. The rest of the car is assumed to be rigid. The fluid medium is 

assumed to be air with a sound speed c = 343 m/s and density ρa = 1.21 kg/m
3
.       

 A finite element mesh of the window panel along with boundary element meshes for both 

the exterior and interior acoustic domains is shown in Fig. 7. The window panel has a thickness 

of 0.5 cm and is assumed to be made of glass of Young’s modulus E = 72 GPa, Shear modulus G 

= 29.8 GPa, and density ρs = 2520 kg/m
3
. Only the bottom portion of the panel is rigidly fixed 

(constrained in all directions), and the rest of the panel is left free. Invacuo structural modes are 

computed from finite element software and are used to model the structure in the coupled BEM-



FEM formulation. This detailed model helps us understand various vibro-acoustic properties of 

the coupled system. For example, we can use this model to evaluate transmission loss of the 

window panel, or examine the effects of different acoustic liners (impedance material) on the 

transmitted sound, etc. Figure 8 shows the transmission loss of the window panel. An external 

plane wave source located 1 m away from the center of the window panel is used as the 

excitation and the sound pressure is measured at the driver’s ear for this evaluation. 

 

 
 

Fig. 6 – Noise transmission from an external acoustic source to the car interior through a 

window panel at 1000 Hz. Window panel surface velocities are superimposed on the 

sound pressure levels in the interior. 

 

 

 
 

 

 

(a) Surface mesh used to model the 

exterior BE acoustic domain 

(b) FE shell mesh 

used to model the 

window panel 

(c) Surface mesh used to model 

the interior BE acoustic domain 

 

Fig. 7 – Different meshes used to model the fully coupled multi-domain acoustic-structural 

interaction problem. 

 



 
 

Fig. 8 – Transmission loss of the window panel. 

 

 

4 SUMMARY AND CONCLUSIONS 

 

 A fully coupled multi-domain BEM-FEM formulation to model multiple acoustic domains 

interacting through elastic structures is presented. All applicable computations are accelerated 

using FMM. The structural model using FEM is further reduced using invacuo structural modes. 

Different case studies are presented. The proposed methods are very general and could be 

extended to model other systems that require a fully coupled analysis such as exhaust pipe shell 

radiation, acoustic loading on aerospace vehicles, sound transmission through walls, etc. 
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