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The coupled translation-rotation vibratory response of hypoid geared rotor system d
loaded transmission error excitation is studied by employing a generalized 3-dimens
dynamic model. The formulation includes the effects of backlash nonlinearity as w
time-dependent mesh position and line-of-action vectors. Its mesh coupling is de
from a quasi-static, 3-dimensional, loaded tooth contact analysis model that accoun
the precise gear geometry and profile modifications. The numerical simulations
significant tooth separation and occurrence of multi-jump phenomenon in the pred
response spectra under certain lightly loaded operating conditions. Also, resonant m
contributing to the response spectra are identified, and cases with super-harmonic
illustrated. The computational results are then analyzed to quantify the extent of
linear and time-varying factors.@DOI: 10.1115/1.1564064#
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1 Introduction
It is generally accepted that the gear kinematic transmiss

error is the primary source of vibratory energy excitation th
produces tonal noise problems in geared applications includ
hypoid gear set used in automotive and aerospace drive tr
Extensive studies have been performed to synthesize machine
and cutter settings in order to achieve the desired tooth pro
and contact patterns that minimize transmission errors@1–6#.
However, very few studies on the system dynamic aspect of n
parallel gearing have been conducted. From the gear litera
only a few analytical investigations@7–11# on hypoid gear vibra-
tions were found. On the other hand, the dynamics of parallel
gears have been investigated extensively@12–19#. Of the few
studies that exist on hypoid gear dynamics, many actually igno
the direct excitation of transmission error~TE! and/or did not
define the mesh coupling explicitly. Most of these models ess
tially rely on overly simplified mesh force vector representatio
For instance, the hypoid gear mesh model suggested by Do
et al. @20# for use in the context of performing linear time
invariant dynamic finite element calculations was based o
bevel gear mesh equivalence theory. More recently, Cheng
Lim @21–23# proposed a more sophisticated mesh coupling f
mulation derived from exact gear geometry for both spiral be
and hypoid gears, and applied the resulting linear time-invar
~LTI ! dynamic model to study drive train torsion and translati
vibration responses.

Nonlinear vibration work on spur or helical gears in which ge
backlash is present has been extensively studied by O¨ zgüven and
Houser@12#, Kahraman et al.@14–16#, Hochmann@24#, and many
others. In these investigations the gear contact position and
of-action are assumed time-invariant. While this treatment may
reasonable due to the nature of kinematics in these types of
pairs and in consideration of the small out-of-plane gear motio
is not directly applicable to hypoid gears. This is because e
point on the hypoid tooth contact areas traces a curvilinear p
as opposed to a nearly straight line in spur or helical gear c
Furthermore, the surface curvatures of hypoid gear teeth are
nificantly more complex. At the same time, the friction genera

Contributed by the Power Transmission and Gearing Committee for publicatio
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at the mesh interface could produce oblique internal dyna
forces and moment excitations on the gear members, even th
not as significant as other types of gears since the relative sli
motion between the mating gear teeth is more uniform and d
not reverse direction as the contact area crosses the mean
point. It may be pointed out that the effect of friction was al
previously discussed by Hochmann@24# and Lida et al.@25# for
parallel axis gears, and Handschuh and Kicher@26# for spiral
bevel gears.

In the present study, a multi-degree-of-freedom, nonlinear tim
varying ~NLTV ! lumped parameter dynamic model of the hypo
gear pair with torsional and translational effects is formulated. T
model includes gear backlash, constant coefficient of friction,
time-dependent mesh position and effective line-of-action.
though the level of unloaded kinematic transmission error
been shown to be directly related to the severity of gear no
problem in numerous examples, the loaded transmission e
~LTE! is believed to be better correlated to gear whine. This is d
to the effects of tooth deflection and load sharing phenomena
transmission error@12,13,27,28#. Accordingly, in our analysis the
loaded transmission error is formulated and incorporated into
dynamical equations of motions as the excitation source. In o
to obtain the time-varying characteristics affecting mesh line-
action, mesh position and load dependent mesh stiffness, a un
mesh generator is first employed to generate the theoretical t
geometry from manufacture settings for a specific set of hyp
gear design@1–4,23,29#. The gear mesh parameters needed for
model are then determined by applying an existing loaded to
contact analysis program@30,31#, which is based on the finite
element and surface integral methods. The program is essen
used to perform the quasi-static calculations needed to cons
the nature of the gear mesh over one tooth-to-tooth cycle in
crete steps of angular positions. Finally, an efficient numer
solver based on the 5/6th order Runge-Kutta integration rou
with adaptive size is used to compute the dynamic response du
loaded transmission error excitation. The resonant modes con
uting to the response spectra are also identified, and the effec
non-linear and time-varying factors are quantified.

2 Gear Mesh Model
The derivation of the non-linear time-varying gear mesh mo

begins by performing a series of quasi-static, 3-dimensional to

n in
003 by ASME JUNE 2003, Vol. 125 Õ 373
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Fig. 1 Illustrations of „a… hypoid gear setup, „b… contact cells and three coordinate
systems denoted by S0 , S1 and S2 , and „c… load distributions on the tooth surface
for a specific gear angular position
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contact analysis using the Contact Analysis Program Pack
~CAPP! mentioned above. The program combines the finite e
ment method and surface integral, and employs a Simplex
algorithm to simulate the elastic gear tooth contact engagem
problem. The mesh point, stiffness, line-of-action, loaded tra
mission error, and normal and friction load distributions at d
crete angular positions over one mesh cycle are computed. F
specific gear angular position, the contact areas of the gear
are discretized into groups of finite cells with uniform propertie
as shown in Fig. 1. The local compliance between a pair of fin
cells i and j, denoted byci j , is a function of the spatial dimen
sions, gear tooth meshing position and applied mean torque.
position vector of each contact celli in the coordinate systemSl
represented byXl , Yl and Zl axes,l 51 ~pinion! or 2 ~gear!, is
r i

( l )5$xi
( l ) yi

( l ) zi
( l )%T, while the unit normal vector is given by

ni
( l )5$nix

( l ) ,niy
( l ) ,niz

( l )%T. The projection of the unit normal vecto
into the tangential direction of the gear rotational motion relat
to Sl can be expressed as

l ix
~ l !5ni

~ l !
•~ i~ l !3r i

~ l !!, l iy
~ l !5ni

~ l !
•~ j ~ l !3r i

~ l !!,

l iz
~ l !5ni

~ l !
•~k~ l !3r i

~ l !!, (1)

wherei( l ), j ( l ) andk( l ) are the triad of unit vectors that define th
axes ofSl . Hence, the directional cosine of each celli clearly
depends on the gear geometry and its actual angular posi
Here, the mesh parameterl iu

( l ) (u5x,y,z) is referred to as the
directional rotation radius about the respectiveu-axis, which
qualitatively relates to the tangential force component at the c
tact pointi per unit normal force alongni

( l ) . The relative sliding
velocity vectorni

(12) with respect to the coordinate systemS0 ,
which is identical toS2 , may be transformed into a representati
with respect to the local coordinate systemSl by ni

( l )5@Ml0#
•ni

(12)5$n ix
( l ) ,n iy

( l ) ,n iz
( l )%T, where@Ml0# is the coordinate transfor
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mation matrix betweenSO andSl . Projection of the relative slid-
ing velocity vector in the tangential direction of the gear rotation
motion relative toXl , Yl andZl axes can be shown to be

t ix
~ l !5n iz

~ l !yi
~ l !2n iy

~ l !zi
~ l ! , t iy

~ l !5n ix
~ l !zi

~ l !2n ix
~ l !xi

~ l ! ,

t iy
~ l !5n ix

~ l !zi
~ l !2n ix

~ l !xi
~ l ! . (2)

Here, tiu
( l ) relates to the tangential friction force component

contact pointi per unit friction force in the sliding directionn i
( l ) .

The loaded transmission error is typically the net result of b
tooth profile errors, and tooth deflections due to base rotat
bending, shearing and contact deformation. Suppose the pi
and gear contact regions are divided intoNc number of finite cells
as depicted in Fig. 1~b!, which is directly dependent on transmi
ted load and angular position. Since the instantaneous rotation
all simultaneously contacting cells are the same under load du
load sharing compatibility@27–30#, the following expression for
the equilibrium state of gear relative rotation, which is identical
the LTE of the pinion assuming stationary gear, can be derive

DuL5
T12~$L1%2m$T1%!@Cd#21$E0%

T

~$L1%2m$T1%!@Cd#21$L1%
T , (3)

whereT1 is the mean torque applied to the pinion,m is the friction
coefficient, $T1%5$t1y

( l ) ,t2y
( l ) , . . . ,tNcy

( l ) %, and L1

5$l1y
(1) l2y

(1) . . . lNcy
(1) % is a vector of dimensionNc that represents

the increase in separation between the mating gear teeth at
individual cell position due to the gear pair angular displacem
DuL . The compliance matrix@Cd# contains the net displacemen
due to instantaneous normal and friction loads acting on all fin
cells. The initial gear tooth separation vector is given byE0
5$«01 . . . «0Nc

%. It may be noted that due to the deflection of th
gear teeth and effect of load sharing, the contact areas on the
Transactions of the ASME
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surface are generally perturbed from its theoretical position. T
LTE term in Eq.~3! denoted byDuL is generally periodic with
mesh frequency, and is a function of gear rotation position a
applied load. It can be expressed in the Fourier expansion form

DuL~u!5e01(
r51

n

~erc cos~rvm~u2u0!!1~ers sin~rvm~u2u0!!,

wherevm is fundamental gear mesh frequency andu0 is initial
position angle of the pinion.

3 Dynamic Formulation
Consider a generic drive train system comprising of a hyp

gear pair, a mechanical source and a load element as shown in
2. Each gear is modeled as a rigid conical body attached t
torsionally flexible shaft that is supported by compliant rollin
element bearings represented by a set of discrete stiffness
damping elements@32#. Note that the nominal rotations of th
pinion and gear are aboutY1 and Y2 respectively. Furthermore
only the torsional coordinates of the driveruE and loadu0 are
modeled as their translation coordinates that are normally dec
pled from those of the gears by use of flexible coupling desi
The instantaneous nominal mesh vectors, including contact p
tion and line-of-action, under the dynamic condition are assum
to be the same as those of the quasi-static condition for the id
tical angular position. In other words, we assume the normal
friction load distributions, and line-of-action are unperturbed
the vibratory response. This approach has also been used suc
fully in previous studies on parallel gear dynamics@13,14,18#.

In order to improve computational efficiency and simplify th
modeling process, the concept of equivalent mesh forces and
ments will be used in the subsequent dynamic analysis. First,
must seek the equivalent mesh characteristics as a function of
angular position based on the quasi-static results. To do so,
sider the resultant normal forceFdu

( l ) and friction forceF f u
( l ) along

the u-axis, whereu5x,y,z, given by

Fdu
~ l !5(

i

Nc

(
j

Nc

niu
~ l !ki j d j5Nu

~ l !@Cd#21Dd5nu
~ l !W0 , (4a)

F f u
~ l !5(

i

Nc

(
j

Nc

mn iu
~ l !ki j d j5mVu

~ l !@Cd#21Dd5mnu
~ l !W0 , (4b)

whered j is the deformation of cellj, Dd5$d1d2 . . . dNc
%T, Nu

( l )

5$n1u
( l )n2u

( l ) . . . nNcu
( l ) %T, Vu

( l )5$n1u
( l )n2u

( l ) . . . nNcu
( l ) %T, @Cd#21Dd is the

Fig. 2 A multi-degree-of-freedom lumped parameter model of
a hypoid geared rotor system
Journal of Mechanical Design
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normal force acting at the gear mesh interface, andW0

5T1 /(ly
(1)2mty

(1)) is the equivalent normal load acting on th
meshing teeth, which depends on the instantaneous transmi
ratio and pinion angular position. Equation~4! gives the averaged
normal and friction forces by summing the loads at every con
cells. Thus,nu

( l ) andnu
( l ) are the equivalent normal and frictiona

force vectors. Similarly, the resultant moments contributed by
normal and friction forces about theu-axis are

Tdu
~ l !5(

i

Nc

(
j

Nc

l i
~ l !ki j d j5Lu

~ l !@Cd#21Dd5lu
~ l !W0 , (5a)

Tf u
~ l !5(

i

Nc

(
j

Nc

mt i
~ l !ki j d j5mTu

~ l !@Cd#21Dd5mtu
~ l !W0 , (5b)

where Lu
( l )5$l1u

( l )l2u
( l ) . . . lNcu

( l ) %T and Tu
( l )5$t1u

( l )t2u
( l ) . . . tNcu

( l ) %T.

The parameterslu
( l ) andtu

( l ) are the equivalent directional rotatio
radii of the normal and friction forces respectively.

Next, consider the pinion and gear members whose motions
described by 3 orthogonal translation coordinates and the co
sponding 3 other angular rotation coordinates given byql(t)
5$xl yl zl uxl uyl uzl%

T where xl , yl and zl are the translation
terms, anduxl , uyl anduzl are the angular ones. Since the me
and friction forces are determined under the quasi-static condit
the dynamic force and moment expressions can be further sim
fied by using the equivalent mesh vectors derived earlier. For g
memberl, the equivalent normal and friction forces can be e
pressed as

Fdu
~ l !5(

i

Nc

(
j

Nc

niu
~ l !ki j d j5nu

~ l !km~h~2!q22h~1!q11«0!, (6a)

F f u
~ l !5(

i

Nc

(
j

Nc

mn iu
~ l !ki j d j5mnu

~ l !km~h~2!q22h~1!q11«0!,

(6b)

respectively, where«0 is the translation form of the unloade
kinematic transmission error in the direction of the line-of-actio
Similarly, the equivalent dynamic moments due to normal a
friction forces are

Tdu
~ l !5(

i

Nc

(
j

Nc

l iu
~ l !ki j d j5lu

~ l !km~h~2!q22h~1!q11«0!, (7a)

Tu f
~ l !5(

i

Nc

(
j

Nc

mt iu
~ l !ki j d j5mtu

~ l !km~h~2!q22h~1!q11«0!,

(7b)

respectively. In the above equations, h( l )(t)
5$nx

( l )ny
( l )nz

( l )lx
( l )ly

( l )lz
( l )% denotes the mesh characteristic vec

for a specific angular position and applied pinion torque. Th
h( l ) is clearly time-varying and load-dependent. Under quasi-st
condition, the scalar value of (h(2)q22h(1)q1) from the torsional
gear contact analysis, in whichq15$u1% andq25$u2%, is essen-
tially equivalent to the loaded transmission erroreL along the
mesh force line-of-action direction. From Eqs.~5a! and ~6a!, the
averaged mesh stiffnesskm can be shown to bekm

5W0 /(ly
(1)DuL2«0)5Wo /(eL2«0), whereeL is the translation

form of LTE in the mesh force line-of-action direction. Simila
expressions of the mesh stiffness are also used by O¨ zgüven and
Houser@13# and Blankenship and Singh@18#. Hence, the instan-
taneouskm is a function of load, tooth errors, tooth modification
and gear rotation position. Accordingly, the equations of mot
for the 14 degrees-of-freedom~DOF! system shown in Fig. 2
incorporating loaded transmission error termeL are given by

I EüE1kt1
~uE2u1!1ct1

~ u̇E2 u̇1!52T1 , (8a)
JUNE 2003, Vol. 125 Õ 375
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@M1#$q̈1%1~h~1!T
2mg~1!T

! f ~dd2eL!1@C1b#$q̇1%1@K1b#$q1%

5$Fext
~1!%, (8b)

@M2#$q̈2%2~h~2!T
1mg~2!T

! f ~dd2eL!1@C2b#$q̇2%1@K2b#$q2%

5$Fext
~2!%, (8c)

I OüO1kt2
~uO2u2!1ct2

~ u̇O2 u̇2!52T2 , (8d)

whereI E andI O are the mass moment of inertias of the driver a
load, kt1

and kt2
are the torsional stiffnesses of the input a

output shafts,ct1
andct2

are the input and output shaft dampin
coefficients,T1 and T2 are the mean torques of the driver an
load,$Fext

( l ) % is the external load vector acting on the gear mem
l, and the mass, stiffness and damping matrices of shaft-bea
components are given by@Ml #, @Klb# and@Clb# respectively. The
damping terms shown explicitly here are viscous type and t
represent the combined effects of all damping present in the
tem except for the mesh damping. For most practical transm
sions, their values are typically equivalent to damping ratio
0.01 to 0.02. The dynamic transmission error~DTE! is computed
from dd5h(1)$q1%2h(2)$q2%, while the time-varying, load-
dependent vector for friction force is g( l )(t)
5$nx

( l )ny
( l )nz

( l )tx
( l )ty

( l )tz
( l )%. In Eq. ~8!, the non-linear function

f (dd2eL) that describes the elastic mesh term is given by

f ~dd2eL!55
W01km~ t !•~dd2eL!1cm~ ḋd2ėL!,

if Wd.0

0, if Wd50,2bc,dd,0,

W01km~ t !•~dd2eL1bc!1cm~ ḋd2ėL1bc!,

if Wd,0, dd,2bc
(9)

Wd5W01km~dd2eL!1cm~ ḋd2ėL!, (10)

which is clearly dependent on the actual operating condition. N
thatcm in the above equation is the mesh damping defined for
losses from the tooth engagement process.

4 Computational Results

4.1 Procedure. Now consider a reduced order model th
includes the pinion and gear rotation and translation coordina
torsional compliances of the shafts, and shaft-bearing sup
stiffnesses. The pitchuzl and yawuxl angular coordinates of both
the pinion (l 51) and gear (l 52) are neglected as they wer
found to be unimportant in the earlier work by Cheng and L
@22#. Furthermore, the formulation is transformed into a positiv
definite system usinga1(t)5u12uE , a2(t)5ly

(2)u22ly
(1)u1 ,

anda3(t)5u22uO , which separates out the rigid body rotation
mode and improves computational efficiency. The numerical
lution of the proposed set of nonlinear, time-varying equations
motions governing the torsional and translational vibrations of
hypoid geared rotor system illustrated in Fig. 2 is obtained
applying the 5/6th order Runge-Kutta integration routine w
adaptive time step capability. As part of the solution scheme,
second order differential form of Eq.~8! must be casted in the
state-space domain generally given byȧi5 f i(a1 ,a2 , . . . ,a18),
where i 51,2, . . .,18. The calculation generates the time dom
steady-state vibratory response, which can be processed to
vide either mesh frequency or order spectrum. A summary of
proposed computational approach is shown in Fig. 3. For c
parison purpose, the corresponding linearized, time-averaged
tem model is also analyzed using the modal superposition me
that has been presented in the earlier paper by Lim and Ch
@33#. The LTE calculated from the CAPP analysis is used as
primary excitation input into the proposed simulation proce
376 Õ Vol. 125, JUNE 2003
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Note that for a specific pinion/gear angular position, the dynam
load can be computed from Eq.~10!, where numerically negative
or zero dynamic load indicates the condition of tooth separat
When this detected, the possible occurrence of tooth back
collision is verified using Eq.~9!. Occurrence of tooth backsid
collision leads to double-sided tooth impacts. If no backside c
lision is observed, then we simply get only single-sided too
impacts. The former condition tends to produce multi-jump f
quencies similar to those seen in gear rattle phenomenon. N
that the numerical results shown next assume no friction ef
~i.e. m50) to limit the scope of the present study, even though
proposed formulation established incorporates the mesh fric
term explicitly.

4.2 Linear Time-Invariant. First, the loaded transmissio
error~LTE! and effective mesh stiffnesskm are computed for vari-
ous torque load levels for the example case given in Table 1.
numerical result shows that the mean torque load applied to
pinion member tends to reduce the fundamental oscillation de
of the loaded transmission error, as depicted in Fig. 4~a!. This is
because larger tooth surface areas are in contact under h
torque load. Therefore, the fundamental mesh harmonic com
nent of LTE decreases in magnitude with increasing torque lo
This can be clearly seen in Figs. 4~b! and 4~c! that illustrate the
Fourier coefficients of LTE for torque load levels of 113 Nm a
509 Nm respectively. That is why the higher harmonics, in p
ticular the second order one appears more dominant at hi
operating load. Likewise, the effect of mean torque load applie
the pinion member on averaged mesh stiffness of the hypoid
pair is shown in Fig. 5. Here, it can be seen thatkm initially
increases quite rapidly with increasing torque at lower load ra
but reaches an upper limit as load continues to rise beyond
Nm or so.

Next, the free vibration analysis assuming linear time-invari
mesh stiffness and force vector is performed. For the hypoid g
set defined in Table 1, three modal families are obtained:~i! out-
of-phase gear torsional mesh coupled with translational moti
of pinion and/or gear;~ii ! in-phase gear torsional mesh couple

Fig. 3 Flowchart of the proposed computational approach
Transactions of the ASME
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with translational motions of pinion and/or gear; and~iii ! pure
translation motions of pinion and/or gear member. The predic
modes and their corresponding natural frequencies are provide
Table 2 for three pinion mean torque loads. Modes 5 and 8
pure translations that are basically decoupled from the me
coupling coordinate. Thus, their corresponding natural frequen
are essentially independent of the transmitted torque load or m
stiffness. On the other hand, the natural frequencies of mod
and 9 with stronger gear mesh dependency vary slightly m
with load due to change in effective mesh position and line-
action.

4.3 Nonlinear Time-Varying „NLTV …. The time-varying
behavior of the hypoid gear pair is determined by the mesh c
acteristic vectorslu

( l ) andnu
( l ) related to the normal force, andtu

( l )

andnu
( l ) associated with the friction force. The variations in the

mesh characteristic vectors partly caused by the change in
number of tooth pairs in mesh as the gears rotate through
mesh cycle are greater for lighter torque and consequently lo
for higher torque as shown in Fig. 6. Figure 7 shows the num
of tooth pairs in contact varying periodically between 1 and
Note that the equivalent normal and friction force vectors v
more rapidly in the vicinity of the angular positions where t
number of tooth pairs in contact changes. For the present hy

Table 1 Machine settings and gear design parameters for
face-milled Gleason hypoid gear set

Gear data:

Number of pinion teeth 10
Number of gear teeth 43
Gear face width~mm! 48
Gear face angle~radian! 1.2834
Gear root angle~radian! 1.2322
Gear addendum~mm! 3.41
Gear dedendum~mm! 10.42
Mean cone distance~mm! 152.14
Pinion offset~mm! 31.75
Pinion type left-hand

Pinion machine and cutter settings:

Cutter blade angle~radian! 0.3491
Machine center to back~mm! 24.5847
Basic swivel angle~radian! 20.7046
Basic cradle angle~radian! 1.0614
Sliding base~mm! 18.242
Ratio of roll 3.9936
Blank offset~mm! 24.542
Machine root angle~radian! 20.0226
Point radius~mm! 108.450
Radial setting~mm! 118.513

Gear machine and cutter settings:

Machine root angle~radian! 1.2287
Machine center to back~mm! 1.270
Horizontal setting~mm! 85.598
Vertical setting~mm! 96.177
Cutter blade angle~radian! 0.3927
Nominal radius~mm! 114.30
Point width ~mm! 3.81

System Parameters:

Pinion mass moment of inertia~kg-m2! 8.3E23
Pinion assembly mass~kg! 12.0
Driver mass moment of inertia~kg-m2! 5.5E23
Load mass moment of inertia~kg-m2! 0.10
Gear assembly mass~kg! 49.5
Gear mass moment of inertia~kg-m2! 0.52
Pinion shaft bending stiffness~Nm/rad! 1.0E6
Pinion shaft torsional stiffness~Nm/rad! 1.0E4
Gear shaft bending stiffness~Nm/rad! 8.0E6
Gear shaft torsional stiffness~Nm/rad! 5.0E5
Axial support stiffness~N/m! 1.0E8
Lateral support stiffness~N/m! 3.0E8
Journal of Mechanical Design
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gear example, the largest degree of variations occurs around2100

and 80 of pinion roll angles shown in Fig. 7. It is this time-varying
mesh characteristic that makes hypoid gear engagement uniq
since it affects the instantaneous dynamic forces and mome
acting on the pinion and gear. To understand the implications
the hypoid geared rotor system, the nonlinear time-varyin
~NLTV ! model given by Eq.~8! is studied numerically as de-
scribed earlier by applying the 5/6th order Runge-Kutta integr
tion routine. In the analysis, the mesh force and bearing forc
under steady state condition are predicted and compared to ca
lations for the time-invariant mesh cases. Figure 8 shows the p
dicted dynamic mesh loads in time domain over one mesh cy
using both the time-varying and time-invariant mesh vector mo
els. The calculations are made at the response frequency of
Hz (r 53). The corresponding FFT spectra of both time respons
are shown in Fig. 9. Figure 10 shows the dynamic mesh force a
bearing force spectra predicted using the non-linear time-varyi

Fig. 4 Loaded transmission error and corresponding Fourier
coefficients for two different pinion torques: „a… effect of load;
„b… 113 Nm; and „c… 509 Nm

Fig. 5 Effect of mean pinion torque load on averaged mesh
stiffness
JUNE 2003, Vol. 125 Õ 377
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~NLTV ! and time-invariant~NLTI ! mesh vectors under relativel
high pinion torque. Note that no tooth separation is seen in th
cases. The response of the linear time-invariant~LTI ! model is
also shown for reference. The predicted responses of the nonl
system are generally larger than the linear time-invariant lev
Also, the time-varying mesh model again produces slightly hig
response amplitude than the time-invariant one in spite of
nonlinearity present, especially at lower frequencies~<400 Hz!,
which is consistent with the results of Figs. 8 and 9. The reson
peaks seen in the predicted response are related tor 51, r 53 and
r 57 as defined in Table 2, which are essentially members of

Table 2 Classification of normal modes of the linear time-
invariant system

Mode
Description

Primary Modal
Coordinates

Natural Frequency~Hz!

113 Nm 226 Nm 509 Nm

In-phase
torsion and
translation

2 (Y12Y22uE) 222.4 222.6 222.2

Pure translation5 (Z2) 427.4 427.4 427.4
8 (X1) 887.9 887.9 887.9

Out-of-phase 1 (Y12Y22uE) 204.1 205.1 205.2
torsion and 3 (Y12X22Z22uE2uO) 342.7 344.2 344.4
translation 4 (Y12X22Z22uO) 391.2 391.3 391.3

6 (Y12X22Z22uO) 436.6 436.6 436.5
7 (Z12Y12X22Z2) 786.0 797.0 799.7
9 (Z12Y1) 1450.0 1704.4 1799.1
378 Õ Vol. 125, JUNE 2003
ese

near
ls.
er

the

ant

the

family of modes with out-of-phase torsion coupled with transl
tion motions. In addition to these primary resonances, numer
occurrences of super-harmonic response that are excited by hi
order terms of LTE can be clearly visible for both the nonline
time-varying ~NLTV ! and time-invariant~NLTI ! simulation re-
sults. For instance, the resonance peak at aroundf m5900 Hz in
Fig. 10 is the super-harmonic of the ninth mode, i.e.,f 9/2, which
is excited by the second harmonic of LTE. Note that these sup
harmonic excitations are not seen in the LTI calculations. Als
the fact that the super-harmonics are also present in the cons
mesh stiffness case of the NLTI model excludes the possibility
the effects of higher order ofkm @17#.

Fig. 7 Quasi-static multi-tooth contact analysis results of „a…
load sharing characteristic within one mesh cycle at 509 Nm
pinion input torque; and „b… load distributions for two different
mesh positions

Fig. 8 Predicted dynamic mesh loads for one mesh cycle at
the resonant frequency of 340 Hz for the case of time-varying
„TV… and time-invariant „TI… mesh vectors at 509 Nm of applied
pinion torque load „friction coefficient mÄ0…
Transactions of the ASME



Fig. 9 Mesh load FFT spectra of the time response shown in Fig. 8
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It is generally known that any particular tooth modification
aimed to reduce gear noise excitation for a certain operating
range@27–29#. Accordingly, the forced responses for several a
plied mean torque load cases are analyzed. Figure 11 show
dynamic mesh force responses of low~113 Nm!, medium ~509
Nm! and high~790 Nm! input torques at the pinion using the sam
mesh stiffness to investigate the direct effect of transmission e
The dynamic response of the lighter torque load condition t
corresponds to higher magnitude of transmission error, as sh
in Fig. 4, is higher than that of the heavier torque load conditi
However, if the effect of load on mesh stiffness, as illustrated
Fig. 5 is included in the simulation, we get the forced respon
given by Figs. 12 and 13 for the dynamic mesh and pinion bea
forces respectively. Compared to the results of Fig. 11, we can

Fig. 10 Comparison of the frequency response functions of
the non-linear time-varying „NLTV… and time invariant „NLTI…
cases for 509 Nm of pinion torque. Note that the linear time-
invariant response „LTI… is also plotted „friction coefficient m
Ä0…
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that the inclusion of the effect of changing mesh stiffness due
variation in transmitted load does not imply larger amplitude
dynamic response in the lighter torque load case relative to
higher torque ones in spite of its larger transmission error. Un
light load condition~113 Nm!, tooth separation is seen near 125
Hz. This produces the classical jump phenomenon where the
quency response is discontinuous in the vicinity of the reson
frequency. In this case, it is noted that the full upper branch w
produced by decreasing the rotational speed of the drive tr
while the complete lower branch was formed by slowly increas
the rotational speed. This form of nonlinear behavior depicted
analogous to the classical softening spring case. Figure 14 sh
the time history response functions of the dynamic mesh fo
before and after the jump frequency. Notice the vanishing to
load when separation occurs; however no back-collision
observed.

On the other hand, tooth separation is not seen at all for hig
input torque loads of 509 and 790 Nm. In these cases, the
pairs in mesh maintain continuous contact, in spite of the back
present. One of possible reasons that tooth separation occurs
at light torque load condition rather than heavier load case
because of its larger LTE excitation. In addition, the resonant p
frequencies tend to shift lower as load decreases due to the lo
averaged mesh stiffness as pointed out previously. Further ex
nation of the frequency response functions of the dynamic m
force and bearing force, shown by Figs. 12 and 13 respectiv
reveals some differences in the participating modes. For exam
the dynamic mesh force response possesses a strong reso

Fig. 11 Effect of applied pinion torque load on the dynamic
mesh force assuming the same mesh stiffness of 3 Ã108 NÕm
for all 3 cases shown „friction coefficient mÄ0…
JUNE 2003, Vol. 125 Õ 379
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peak at mesh frequency off m5900 Hz for the case 509 Nm
torque load, which is missing from the bearing force respo
function. This peak response is in fact the super-harmonic of
9th mode as seen earlier in Fig. 10. For torque load of 790 N
this peak is barely visible in the bearing force response e
though it appears very strong in the dynamic mesh force.
differences observed are primarily due to the effect of dyna
transmissibility between the mesh and bearing support area. A
natively, we observe a resonance peak at the lower 800 Hz c
sponding to the primary excitation of mode 7. To explain th
phenomenon quantitatively, the following two cases are sim
lated. The first case assumes a sinusoidal LTE at the fundam
mesh harmonic, while the second analysis uses the first three
monics of LTE. Both calculations are performed by setting
mesh stiffness constant. However, the mesh vector~line-of-action!
remains time-varying. The dynamic mesh force response spe
are shown in Fig. 15~a!. Here, the fundamental harmonic of LT
clearly excites mode 7 (f 75799.7 Hz), while the second har
monic of LTE provides excitation to mode 9 (f 951799 Hz) that
shows up atf m5900 Hz. This is essentially atf 9/2 or 2 f m super-
harmonic frequency as described earlier. However, this is not s

Fig. 12 Effect of applied pinion torque load on dynamic mesh
force with load-dependent averaged mesh stiffness „no friction
effect …

Fig. 13 Effect of applied pinion torque load on the pinion bear-
ing force with load-dependent averaged mesh stiffness „no fric-
tion effect …
380 Õ Vol. 125, JUNE 2003
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in the pinion bearing force response given by Fig. 15~b!. These
results also suggest that the commonly applied linear theory w
only the fundamental harmonic of TE included would result
loss of super-harmonic effect.

The mean torque load effect on the dynamic transmission e
for the cases of 113 and 226 Nm of pinion torques are show
Fig. 16. The corresponding LTI solution is also shown for ref
ence. Note that the jump frequencies are dependent on the to
load due to the changing averaged mesh stiffness. The prim
resonant modes are 1, 3, 7 and 9, which are part of the m
family related to the gear out-of-phase torsion coupled with tra

Fig. 14 Time-history response of the dynamic mesh force near
the jump frequency under light load condition „113 Nm…

Fig. 15 Dynamic mesh force and pinion bearing force due to
the fundamental harmonic of LTE compared to that of the first
three harmonics of LTE. These cases assume 509 Nm of pinion
torque, time-varying mesh vector, time-invariant mesh stiff-
ness, and no friction effect.
Transactions of the ASME
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lation motions. The resonances around 480 Hz for 113 Nm c
and 580 Hz for 226 Nm case are not of the primary mode set,
super-harmonic response generated by the higher order excita
of LTE. To justify this observation, the FFT spectrum of the tim
trace response for the 226 Nm case is illustrated in Fig. 17
shows that even though the system is being driven dynamical
f m5580 Hz, the response of the 3f m harmonic component is als
very high, since the third harmonic of LTE coincides exactly w
the 9th mode.

Finally, the overall vibration of the system in frequency
mesh order domain is presented as 3-dimensional waterfall s
lation of speed sweep plots. The Fourier Transform method
performed on the steady-state response at each speed to obta
individual frequency content. This form of simulation can separ
the net vibration levels into several mesh harmonics. Figure
shows the speed sweep waterfall plots of the dynamic pinion b
ing force and mesh force responses for 509 Nm of input torq
One can see that the response peaks of the fundamental

Fig. 16 Dynamic transmission error for 2 different pinion
torque loads assuming constant mesh stiffness with time-
varying mesh vector and no friction effect. The corresponding
linear time-invariant solutions are also shown. The super-
harmonics indicated are due to the 3rd harmonic of the LTE
excitation.

Fig. 17 Frequency spectrum of DTE „mm… at operating fre-
quency of 580 Hz for the case of 226 Nm of input pinion torque
Journal of Mechanical Design
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order correspond to the damped resonant frequencies of the
mary modes similar to the ones shown in lower frequency port
of Fig. 12. Also, the first harmonic is found to dominate the v
bration spectra more than other higher harmonics especiall
lower running speed where super-harmonics are much less sig
cant. This is not the case at higher speeds where the second
third orders are just as significant as the fundamental one.

5 Summary
The present study presents a non-linear, time-varyi

3-dimensional gear mesh coupling characteristic for simulat
the dynamics of hypoid gears, and includes the effect of back
nonlinearity as well as time-dependent mesh position and line
action vectors. The time-varying mesh characteristic mode
based on a 3-dimensional, quasi-static loaded tooth contact an
sis. Coupled translation-torsion dynamic model of a generic
poid geared rotor system is formulated employing the non-line
time-varying mesh and is also studied numerically to predict
vibratory response due to loaded transmission error excitat
The resonant modes contributing to the response spectra are
identified, and cases with super-harmonics are illustrated. T
study examines for the first time the effect of time-varying me
vector on hypoid gear dynamics. Under light torque load con
tion, tooth separation is observed leading to the classical ju
phenomenon.
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Nomenclature

ci j 5 local compliance of contact cellij
@Clb# 5 damping matrix
@Cd# 5 compliance matrix of contact cells

e0 , erc , ers 5 Fourier terms of mean, cosine and sine parts
transmission error

eL 5 loaded displacement transmission error
f 5 excitation frequency in Hz

f m 5 gear mesh frequency in Hz
$E0% 5 initial gear tooth separation vector

$Fext% 5 external forcing vector
g 5 directional cosine vector of friction force
h 5 directional cosine vector of normal force
I 5 mass moment of inertia term
k 5 stiffness term

i,j,k 5 triad of unit vectors of a coordinate system
@K# 5 stiffness matrix

m 5 mass term
@M# 5 mass matrix

@Ml0# 5 coordinate transformation matrix betweenSl
andS0

n 5 surface normal vector
Nc 5 total number of contact cells
ql 5 displacement vector of pinion (l 51) or gear (l

52)
r 5 mode number

r i 5 position vector of contact celli
Sl 5 coordinate systems
t 5 time ~sec!

Tl 5 torques on pinion (l 51) and gear (l 52)
n l j 5 component of friction force vector (j 5x,y,z)
W0 5 equivalent normal tooth load

x,y,z 5 translation coordinates
«0 5 unloaded kinematic transmission error
dd 5 dynamic displacement transmission error
d j 5 deformation of contact cellj

DuL 5 loaded angular transmission error
@F# 5 mode shape matrix
lu 5 directional rotation radius of normal force

about theu-axis,u5x,y,z
m 5 friction coefficient

ux , uy , uz 5 rotational coordinates
tu 5 directional rotational radius of friction force

about theu-axis,u5x,y,z
uE 5 torsional coordinate of driver
uO 5 torsional coordinate of load
v 5 excitation frequency in rad/sec

vm 5 gear mesh frequency in rad/sec
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