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The coupled translation-rotation vibratory response of hypoid geared rotor system due to
loaded transmission error excitation is studied by employing a generalized 3-dimensional
dynamic model. The formulation includes the effects of backlash nonlinearity as well as
time-dependent mesh position and line-of-action vectors. Its mesh coupling is derived
from a quasi-static, 3-dimensional, loaded tooth contact analysis model that accounts for
the precise gear geometry and profile modifications. The numerical simulations show

significant tooth separation and occurrence of multi-jump phenomenon in the predicted
response spectra under certain lightly loaded operating conditions. Also, resonant modes
contributing to the response spectra are identified, and cases with super-harmonics are
illustrated. The computational results are then analyzed to quantify the extent of non-
linear and time-varying factors.DOI: 10.1115/1.1564064

1 Introduction at the mesh interface could produce oblique internal dynamic
forces and moment excitations on the gear members, even though

It 1 general!y accepted that the gear kinematic transmiss| 0t as significant as other types of gears since the relative sliding
error is the primary source of \(lbratory energy excitation th. otion between the mating gear teeth is more uniform and does
produces tonal noise problems in geared applications includi

X X . . 8t reverse direction as the contact area crosses the mean pitch
hypoid gear set used in automotive and aerospace drive traE%E

. ; . . Gint. It may be pointed out that the effect of friction was also
Extensive studies have been performed to synthesize machine iously discussed by Hochmafi24] and Lida et al[25] for

Lo e ﬁérallel axis gears, and Handschuh and Kicf@8] for spiral
and contact patterns that minimize transmission erfars6]. pay e gears.

However, very few studies on the system dynamic aspect of Non, the present study, a multi-degree-of-freedom, nonlinear time-
parallel gearing have been conducted. From the gear literatugrying (NLTV) lumped parameter dynamic model of the hypoid
only a few analytical investigatiorly—11] on hypoid gear vibra- gear pair with torsional and translational effects is formulated. The
tions were found. On the other hand, the dynamics of parallel &xfpdel includes gear backlash, constant coefficient of friction, and
gears have been investigated extensiidl§—19. Of the few {ime-dependent mesh position and effective line-of-action. Al-
studies that exist on hypoid gear dynamics, many actually ignorgghugh the level of unloaded kinematic transmission error has
the direct excitation of transmission err6fE) and/or did not peen shown to be directly related to the severity of gear noise
define the mesh coupling explicitly. Most of these models essegroblem in numerous examples, the loaded transmission error
tially rely on overly simplified mesh force vector representation${ TE) is believed to be better correlated to gear whine. This is due
For instance, the hypoid gear mesh model suggested by Donigythe effects of tooth deflection and load sharing phenomena on
et al. [20] for use in the context of performing linear time-transmission errof12,13,27,28& Accordingly, in our analysis the
invariant dynamic finite element calculations was based on|gaded transmission error is formulated and incorporated into the
bevel gear mesh equivalence theory. More recently, Cheng aighamical equations of motions as the excitation source. In order
Lim [21-23 proposed a more sophisticated mesh coupling fote obtain the time-varying characteristics affecting mesh line-of-
mulation derived from exact gear geometry for both spiral beveakttion, mesh position and load dependent mesh stiffness, a unique
and hypoid gears, and applied the resulting linear time-invariamiesh generator is first employed to generate the theoretical tooth
(LTI) dynamic model to study drive train torsion and translatiogeometry from manufacture settings for a specific set of hypoid
vibration responses. gear designl-4,23,29. The gear mesh parameters needed for the
Nonlinear vibration work on spur or helical gears in which geanodel are then determined by applying an existing loaded tooth
backlash is present has been extensively studiedagix@n and contact analysis prograi80,31], which is based on the finite
Houser[12], Kahraman et al.14-16, Hochmanri{24], and many element and surface integral methods. The program is essentially
others. In these investigations the gear contact position and linssed to perform the quasi-static calculations needed to construct
of-action are assumed time-invariant. While this treatment may bee nature of the gear mesh over one tooth-to-tooth cycle in dis-
reasonable due to the nature of kinematics in these types of geaate steps of angular positions. Finally, an efficient numerical
pairs and in consideration of the small out-of-plane gear motion,solver based on the 5/6th order Runge-Kutta integration routine
is not directly applicable to hypoid gears. This is because easlith adaptive size is used to compute the dynamic response due to
point on the hypoid tooth contact areas traces a curvilinear patbaded transmission error excitation. The resonant modes contrib-
as opposed to a nearly straight line in spur or helical gear caséing to the response spectra are also identified, and the effects of
Furthermore, the surface curvatures of hypoid gear teeth are gign-linear and time-varying factors are quantified.
nificantly more complex. At the same time, the friction generated
2 Gear Mesh Model
Contributed by the Power Transmission and Gearing Committee for publication in

the JDURNAL OF MECHANICAL DESIGN. Manuscript received July 2001; revised The derivation Qf the non'”near tim?-VaFYing gear me.Sh model
July 2002. Associate Editor: R. F. Handschuh. begins by performing a series of quasi-static, 3-dimensional tooth
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Fig. 1 lllustrations of (a) hypoid gear setup, (b) contact cells and three coordinate
systems denoted by S,;, S; and S,, and (c) load distributions on the tooth surface
for a specific gear angular position

contact analysis using the Contact Analysis Program Packagation matrix betwee®y andS; . Projection of the relative slid-
(CAPP mentioned above. The program combines the finite eleig velocity vector in the tangential direction of the gear rotational
ment method and surface integral, and employs a Simplex typ®tion relative toX;, Y, andZ, axes can be shown to be
algorithm to simulate the elastic gear tooth contact engagement

. . . . H_ | 1)1 Iy _ _(H5( | |
problem. The mesh point, stiffness, line-of-action, loaded trans- = vyl )_Vi(y)zi( . T?y)—Vi(x)Zi( =X,
mission error, and normal and friction load distributions at dis-
" (= M _ (1) )
crete angular positions over one mesh cycle are computed. For a Tiy = Vix &~ Vix X -

specific gear angular position, the contact areas of the gear tegth A el h ial friction f
are discretized into groups of finite cells with uniform propertied €€ 7iu relates to the tangential friction force .com.po?lc)ant at
as shown in Fig. 1. The local compliance between a pair of finifntact point per unit friction force in the sliding direction;” .
cellsi andj, denoted byc;; , is a function of the spatial dimen- The loaded transmission error is typically the net result of both
sions, gear tooth meshing position and applied mean torque. TAEth profile errors, and tooth deflections due to base rotation,
position vector of each contact célin the coordinate systerd bending, shearing and contact deformation. Suppose the pinion
represented by, Y, andZ, axes,|=1 (pinion) or 2 (geay, is and gear contact regions are (_1I|V|qled ifntlpnumber of finite cells_
ri(l):{xi(l) yi(l) Zi(l)}T’ while the unit normal vector is given by &S depicted in Fig. (b), WhI'Ch is Q|rectly erendent on transmit-
() () () (0T o ; ted load and angular position. Since the instantaneous rotations of
n ={nic Ny ’n.iz} : Th_e projection of the unit norm_al vector 5, simultaneously contacting cells are the same under load due to
into the tangential direction of the gear rotational motion relatlvl%ad sharing compatibility27—30, the following expression for
t0 S can be expressed as the equilibrium state of gear relative rotation, which is identical to
A =nD. (Oxrl)y, )\§>|l>:ni<').(j(l>>< riy, the LTE of the pinion assuming stationary gear, can be derived as

D =n( (kD3¢ r(D), @) Ti— ({(Add—w{THIC,] HEQT

Ad = — -1 T
wherei®, j) andk(® are the triad of unit vectors that define the ({Add= m{TDIC] H{ A}
axes ofS;. Hence, the directional cosine of each deltlearly whereT, is the mean torque applied to the pinignis the friction
depends on the gear geometry and its actual angular positigBefficient, {Tl}:{Tg},T(z'y), ,Tﬂiy}, and Ay
Here, the mesh parametaf,) (u=x,y,?) is referred to as the =\ A - AL} is a vector of dimensioh, that represents

dggﬁtt;ir:/aell r?é?;g; tga?I;lésta?wb%l;\ttiatlr?or::eesggfrtlluc%i’t :t”:lhcg c 0th_e increase in separation between the mating gear teeth at each
q y 9 P Ndividual cell position due to the gear pair angular displacement

tact pointi per unit normal force along{" . The relative sliding A6, . The compliance matrikC ;] contains the net displacements
velocity vector»{*? with respect to the coordinate systeé®y, due to instantaneous normal and friction loads acting on all finite
which is identical tdS,, may be transformed into a representatiogells. The initial gear tooth separation vector is given By
with respect to the local coordinate syste®n by vi(')z[M,o] ={ep1 - - 'SONC}' It may be noted that due to the deflection of the

=) ) vD}T, where[M,] is the coordinate transfor- gear teeth and effect of load sharing, the contact areas on the tooth

®3)
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surface are generally perturbed from its theoretical position. Tmermal force acting at the gear mesh interface, anyg
LTE term in Eq.(3) denoted byA6, is generally periodic with =T, /(\(V— u.7{!) is the equivalent normal load acting on the
mesh frequency, and is a function of gear rotation position affleshing teeth, which depends on the instantaneous transmission
applied load. It can be expressed in the Fourier expansion formragio and pinion angular position. Equatié) gives the averaged

n normal and friction forces by summing the loads at every contact
cells. Thusn{) and v’ are the equivalent normal and frictional
force vectors. Similarly, the resultant moments contributed by the
where w,, is fundamental gear mesh frequency aigdis initial normal and friction forces about theaxis are
position angle of the pinion. Ne Ne

Tgl}:z 2 )\i(l)kij5j:AEJI)[C8]7lA5:)\EJ|)WOv (5a)
T

A0L<0>=eo+§l (8 COST W 0— )+ (&5 SINF o 6— b)),

3 Dynamic Formulation

Consider a generic drive train system comprising of a hypoid Nc  Nc
gear pair, a mechanical source and a load element as shown in Fig. T<f'u>= E 2 MTi(”kij 5 =MTS)[C5]71A5=MTS)WOI (5b)
2. Each gear is modeled as a rigid conical body attached to a i
torsionally flexible shaft that is supported by compliant roIIin%MHE Al
element bearings represented by a set of discrete stiffness re A=
damping element§32]. Note that the nominal rotations of theThe parameters() and# are the equivalent directional rotation
pinion and gear are abot; and Y, respectively. Furthermore, radii of the normal and friction forces respectively.
only the torsional coordinates of the drivég and loadéd, are Next, consider the pinion and gear members whose motions are
modeled as their translation coordinates that are normally decalescribed by 3 orthogonal translation coordinates and the corre-
pled from those of the gears by use of flexible coupling desigeponding 3 other angular rotation coordinates given dpt)
The instantaneous nominal mesh vectors, including contact posi{x, y, z, 6y 6, 6,}" wherex,, y, and z; are the translation
tion and line-of-action, under the dynamic condition are assumestms, andd,;, 6,, and ¢, are the angular ones. Since the mesh
to be the same as those of the quasi-static condition for the ideimd friction forces are determined under the quasi-static condition,
tical angular position. In other words, we assume the normal atite dynamic force and moment expressions can be further simpli-
friction load distributions, and line-of-action are unperturbed bffed by using the equivalent mesh vectors derived earlier. For gear
the vibratory response. This approach has also been used sucaggsnberl, the equivalent normal and friction forces can be ex-
fully in previous studies on parallel gear dynamj@s,14,18. pressed as

In order to improve computational efficiency and simplify the
modeling process, the concept of equivalent mesh forces and mo-
ments will be used in the subsequent dynamic analysis. First, we
must seek the equivalent mesh characteristics as a function of gear
angular position based on the quasi-static results. To do so, con- Nc  Nc

J
AR QW and TO={A078) .. 70T

cu

Nc  Nc

Fl=> > nilk;8=n"kn(h®@g,—hVg, +s0), (62)
]

sider the resultant normal forde})) and friction forceF{)) along
the u-axis, whereu=x,y,z, given by
Nc Nc
Fla=2 20 nik;6,=NJ'ICs1 "A=n'Wo,  (4a)
]
Nc Nc
Flo= 2 20 ik 6=V ICs] ™ a5= us Wo, (40)

where §; is the deformation of cell, As={58,8, ...y}, N
={n{in ..

QT VO={p 5 T [Col A s the
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Fig. 2 A multi-degree-of-freedom lumped parameter model of
a hypoid geared rotor system
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Fl=2 20 uwlky 6= wvl kn(h@ap—h gy +£0),
i
(6b)
respectively, wheres is the translation form of the unloaded
kinematic transmission error in the direction of the line-of-action.

Similarly, the equivalent dynamic moments due to normal and
friction forces are

Nc Nc
Th=> > Ak 8 =2 kn(h @~ h Mgy +eg), (78)
i

Nc Nc
ThH=2 2 wrik6=purikn(h@a— Vg + ),
T
(7b)
respectively. In the above  equations, h()(t)

={n"nPndAONDAD} denotes the mesh characteristic vector
for a specific angular position and applied pinion torque. Thus,
h() is clearly time-varying and load-dependent. Under quasi-static
condition, the scalar value oh(?q,—h¥q;) from the torsional
gear contact analysis, in whiah ={6,} andqg,={6,}, is essen-
tially equivalent to the loaded transmission ermgr along the
mesh force line-of-action direction. From Ed5a) and (6a), the
averaged mesh stiffnesk,, can be shown to bek,,
=Wo/(NPA G —e0)=W,/(e — &), wheree, is the translation
form of LTE in the mesh force line-of-action direction. Similar
expressions of the mesh stiffness are also used yin@n and
Houser[13] and Blankenship and Sindi8]. Hence, the instan-
taneouk,, is a function of load, tooth errors, tooth modifications
and gear rotation position. Accordingly, the equations of motion
for the 14 degrees-of-freedoitDOF) system shown in Fig. 2
incorporating loaded transmission error teemare given by

lEbE+ktl(0E_ '91)+Ctl(.0E_ 01)=—Ty, (8a)

JUNE 2003, Vol. 125 / 375



5 W _ DT _ : Note that for a specific pinion/gear angular position, the dynamic
(Ml +(h #g (3~ +[Co A FIKwHad 00 o e computed from E€L0), where numerically negative
:{Félx) , (8pn) or zero dynamic load indicates the condition of tooth separation.
: . When this detected, the possible occurrence of tooth backside
[M,J{82t— (h® + ug@ ) f(Sg—e ) +[Cop Gt +[Kap1{gsr  collision is verified using Eq(9). Occurrence of tooth backside
collision leads to double-sided tooth impacts. If no backside col-

— g2 o . . :
*{Féx)th (8¢) lision is observed, then we simply get only single-sided tooth
. . o impacts. The former condition tends to produce multi-jump fre-

I000+kl2( 0o~ 92)+Ctz( o= 02)=—Tz, (8d) quencies similar to those seen in gear rattle phenomenon. Note

at the numerical results shown next assume no friction effect
e. n=0) to limit the scope of the present study, even though the
roposed formulation established incorporates the mesh friction
erm explicitly.

wherel ¢ andl g are the mass moment of inertias of the driver anE]
load, k;, and k, are the torsional stiffnesses of the input an .
output shaftsc, andc,, are the input and output shaft dampin
coefficients,T; and T, are the mean torques of the driver and ] i ] ) o
load,{F{)} is the external load vector acting on the gear member 4-2 _Linear Time-Invariant. _ First, the loaded transmission

I, and the mass, stiffness and damping matrices of shaft-bearﬁfégr(LTE) and effective mesh stiffness, are computed for vari-
components are given W, ], [K,,] and[C,,] respectively. The ous torque load levels for the example case given in Tat_)le 1. The
damping terms shown explicitly here are viscous type and th merlcal result shows that the mean torque load a_ppll_ed to the
represent the combined effects of all damping present in the s{&ion member tends to reduce the fundamental oscillation depth

tem except for the mesh damping. For most practical transmfd- the loaded transmission error, as depicted in Fig).4rhis is
sions, their values are typically equivalent to damping ratio cause larger tooth surface areas are in contact under higher

0.01 to 0.02. The dynamic transmission erfbiTE) is computed torque load. Therefore, the fundamental mesh harmonic compo-
from 84=hM{q,}—h@{g,}, while the time-varying, load- mr-:;_nt of LTE decreases in magnitude with increasing torque load.
dependent  vector  for friction force is g0 (t) This can be _(:Ifsarly seen in Figsib} and 4c) that illustrate the
p 0 (1) () (D ) 9 - Fourier coefficients of LTE for torque load levels of 113 Nm and
={n vy’ n’ry’n’} In Eq. (8), the non-linear function 509 Nm respectively. That is why the higher harmonics, in par-
f(dq—e.) that describes the elastic mesh term is given by ticular the second order one appears more dominant at higher
o operating load. Likewise, the effect of mean torque load applied at
Wot k(1) (da—€0) +Cm( g~ €0), the pinion member on averaged mesh stiffness of the hypoid gear
if Wy>0 pair is shown in Fig. 5. Here, it can be seen that initially
. A increases quite rapidly with increasing torque at lower load range
f(5g—e)=4 0 if Wq=0,~bc=54=<0, but reaches an upper limit as load continues to rise beyond 500
Wo+Kn(t) - (6g—eL+be) +Cpn(dg—e +be), Nm or so.
. Next, the free vibration analysis assuming linear time-invariant
if Wy<<0, dy<—be mesh stiffness and force vector is performed. For the hypoid gear
©) set defined in Table 1, three modal families are obtaifiedut-
_ _ S of-phase gear torsional mesh coupled with translational motions
Wo=Wot k(g =€)+ Cm( 4~ 81) (10) - o pinion and/or gear(ii) in-phase gear torsional mesh coupled
which is clearly dependent on the actual operating condition. Note
thatc,, in the above equation is the mesh damping defined for the
losses from the tooth engagement process.

Machine and cutter settings for hypoid pinion and gear

4 Computational Results

4.1 Procedure. Now consider a reduced order model that
includes the pinion and gear rotation and translation coordinates, | Gear tooth surface and finite element mesh generations
torsional compliances of the shafts, and shaft-bearing support based on the simulation of gear cutting processes
stiffnesses. The pitch,, and yawé,, angular coordinates of both
the pinion (=1) and gear I(=2) are neglected as they were

found to be unimportant in the earlier work by Cheng and Lim Loaded tooth contact analysis applying CAPP program
[22]. Furthermore, the formulation is transformed into a positive-

definite system usingay(t)=6;— 0, ay(t) =\~ A6, l

andag(t) = 6, 6o, which separates out the rigid body rotational Calculations of normal & friction load distributions, and

mode and improves computational efficiency. The numerical so-
lution of the proposed set of nonlinear, time-varying equations of
motions governing the torsional and translational vibrations of the
hypoid geared rotor system illustrated in Fig. 2 is obtained by

equivalent mesh model (LTE, &, n.” , A7,z etc.)

u u

applying the 5/6th order Runge-Kutta integration routine with Determination of the system parameters including gear
adaptive time step capability. As part of the solution scheme, the masses & inertias, and shaft & bearing compliances
second order differential form of Ed8) must be casted in the

state-space domain generally given ay=f;(a;,a,, ... ,a1g), \

wherei=1,2,...,18. The calculation generates the time domain
steady-state vibratory response, which can be processed to pro-
vide either mesh frequency or order spectrum. A summary of the

Numerical simulation with 5/6" order Runge-Kutta
integration routine with adaptive time step

proposed computational approach is shown in Fig. 3. For com- l

parison purpose, the corresponding linearized, time-averaged sys- - -

tem model is also analyzed using the modal superposition method Frequency or order domain analysis for steady-state
that has been presented in the earlier paper by Lim and Cheng system dynamic response

[33]. The LTE calculated from the CAPP analysis is used as the
primary excitation input into the proposed simulation process.Fig. 3 Flowchart of the proposed computational approach
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Table 1 Machine settings and gear design parameters for O
face-milled Gleason hypoid gear set @ T T unloaded

¢,"' ™ .
Gear data: s _113Nm A
Number of pinion teeth 10 T 0S5 -~ "
Number of gear teeth 43 = 226 Nm )
Gear face widthmm) 48 P
Gear face angléradian 1.2834 g T
Gear root angléradian 1.2322 o 10
Gear addendunfmm) 3.41 g
Gear dedendunimm) 10.42 %
Mean cone distancemm) 152.14 ‘s 509 Nm
Pinion offset(mm) 31.75 Z //\/
Pinion type left-hand E ASE e, N—T .
Pinion machine and cutter settings: T9ONM e
Cutter blade angléradian 0.3491
Machine center to backnm) —4.5847 20 X A .
Basic swivel angléradian —0.7046 0.4 0.2 0 0.2 0.4
Basic cradle angl¢radian 1.0614 Pini .
Sliding base(mm) 18.242 inion rotation angle (rad)
Ratio of roll 3.9936
Blank offset(mm) 24.542 .06 0.25
Machine root angléradian —0.0226 e (b) (c)
Point radius(mm) 108.450 5 0.20
Radial settingmm) 118.513 2 o4 :

5 0.
Gear machine and cutter settings: 5 0.15
=
Machine root angléradian 1.2287 ‘3 0.10
Machine center to backmm) 1.270 g 02
Horizontal settinglmm) 85.598 g 0.05
Vertical setting(mm) 96.177 g
Cutter blade angléradian 0.3927 = 0.0 0
Nominal radius(mm) 114.30 t 2 3 4 5 6 1 2 3 4 5 6
Point width (mm) 3.81 Harmonics of mesh fre
quency
System Parameters:
o o Fig. 4 Loaded transmission error and corresponding Fourier

E:E:gg gsﬁézsmfg@mn?gst(g;)lnert(ikg-mz) 8-22503 coefficients for two different pinion torques: (a) effect of load;
Driver mass moment of inertigkg-m?) 5.5E-3 (b) 113 Nm; and (c) 509 Nm
Load mass moment of inertigg-n) 0.10 L a6l
Gear assembly maskg) 495 gear example, the largest degree of variations occurs are
Gear mass moment of inertiag-nv) 0.52 and & of pinion roll angles shown in Fig. 7. It is this time-varying
Pinion shaft bending stiffnes&im/rad 1.0E6 mesh characteristic that makes hypoid gear engagement unique,
Pinion shaft torsional stiffnesd\m/rad 1.0E4 since it affects the instant d ic f d t
Gear shaft bending stiffnegsim/rad 8.0E6 [ ¢ It arec S_ _e Instantaneous dynamic OI‘CE‘S_ an_ momen S
Gear shaft torsional stiffnegdlim/rad 5.0E5 acting on the pinion and gear. To understand the implications on
Axial support stiffnesgN/m) 1.0E8 the hypoid geared rotor system, the nonlinear time-varying
Lateral support stiffneseN/m) 3.0E8 (NLTV) model given by Eq.(8) is studied numerically as de-

with translational motions of pinion and/or gear; afiid) pure
translation motions of pinion and/or gear member. The predict
modes and their corresponding natural frequencies are provide
Table 2 for three pinion mean torque loads. Modes 5 and 8

scribed earlier by applying the 5/6th order Runge-Kutta integra-
tion routine. In the analysis, the mesh force and bearing forces
under steady state condition are predicted and compared to calcu-
lations for the time-invariant mesh cases. Figure 8 shows the pre-
g&cted dynamic mesh loads in time domain over one mesh cycle
ing both the time-varying and time-invariant mesh vector mod-
QlS. The calculations are made at the response frequency of 340
z (r=3). The corresponding FFT spectra of both time responses

pure translations that are basically decoupled from the me

coupling coordinate. Thus, their corresponding natural frequencgse

are essentially independent of the transmitted torque load or m
stiffness. On the other hand, the natural frequencies of modes 7
and 9 with stronger gear mesh dependency vary slightly more
with load due to change in effective mesh position and line-of-
action.

4.3 Nonlinear Time-Varying (NLTV). The time-varying
behavior of the hypoid gear pair is determined by the mesh char-
acteristic vectora () andn{) related to the normal force, ang{’
and () associated with the friction force. The variations in these
mesh characteristic vectors partly caused by the change in the
number of tooth pairs in mesh as the gears rotate through one
mesh cycle are greater for lighter torque and consequently lower
for higher torque as shown in Fig. 6. Figure 7 shows the number
of tooth pairs in contact varying periodically between 1 and 2.
Note that the equivalent normal and friction force vectors vary

Mesh stiffness (MN/mm)

0.7

061
05F
04r
03F

0.2
0

225 450 675
Torque (Nm)

900

more rapidly in the vicinity of the angular positions where theig. 5 Effect of mean pinion torque load on averaged mesh
number of tooth pairs in contact changes. For the present hypaeiiffness

Journal of Mechanical Design

shown in Fig. 9. Figure 10 shows the dynamic mesh force and
ring force spectra predicted using the non-linear time-varying

JUNE 2003, Vol. 125 / 377



Table 2 Classification of normal modes of the linear time-

invariant system

Natural FrequencyHz)

Mode Primary Modal

Description Coordinates 113 Nm 226 Nm 509 Nm

In-phase 2(Y1—Y,—6E) 222.4 222.6 222.2

torsion and

translation

Pure translation5 (Z,) 4274 4274 4274
8 (Xy) 887.9 887.9 887.9

Out-of-phase 1 (Y{—Y,— 6g) 204.1 205.1 205.2

torsion and 3(Y—Xo,—Z,—0:—6p) 3427 3442 3444

translation 4 (Y1—Xo—Z,—0p) 391.2 391.3 391.3
6 (Y1—X—Z,—0p) 436.6  436.6  436.5
T(Z,—Y1—Xy—Z5) 786.0 797.0 799.7
9(Z,—Yy) 1450.0 1704.4 1799.1

(NLTV) and time-invarian{NLTI) mesh vectors under relatively
high pinion torque. Note that no tooth separation is seen in the

cases. The response of the linear time-invari@iti) model is

also shown for reference. The predicted responses of the nonlin
system are generally larger than the linear time-invariant leve
Also, the time-varying mesh model again produces slightly high
response amplitude than the time-invariant one in spite of tl

nonlinearity present, especially at lower frequendi€d00 H2,

which is consistent with the results of Figs. 8 and 9. The resone

peaks seen in the predicted response are related Ior =3 and
r=7 as defined in Table 2, which are essentially members of t

=254

-25.6F ™.

-25.8¢ |

-26.0F

At (mm)

Ni
26k 509 Nm

-26.4}

-26.6 -
- -10

(@

20

114

113}

112+

Az (mm)

111}

1104

109

-10

0

10

Pinion roll angle (degree)

®

Fig. 6 Directional rotation radii (mm) corresponding to the
equivalent quasi-static normal force under forward drive oper-
ating condition. The number of tooth pairs in contact is shown

for the two torque loads at 113 Nm, [#] ,

(#),——.(a) Pinion; (b) Gear
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; and 509 Nm,

1335} \
g ,,"' Tooth #3
3 890}
i
g
= Tooth #4
S sl /
O - L, n A
-20 -10 0 10 20

Pinion roll angle (degree)

(@)

At pinion roll angle of -16° At pinion roll angle of 30

®

Fig. 7 Quasi-static multi-tooth contact analysis results of
load sharing characteristic within one mesh cycle at 509 Nm
pinion input torque; and  (b) load distributions for two different
mesh positions

(a)

family of modes with out-of-phase torsion coupled with transla-
tion motions. In addition to these primary resonances, numerous
occurrences of super-harmonic response that are excited by higher
order terms of LTE can be clearly visible for both the nonlinear
time-varying (NLTV) and time-invariant(NLTI) simulation re-
sults. For instance, the resonance peak at ardy¥900 Hz in

Fig. 10 is the super-harmonic of the ninth mode, ifg/2, which

is excited by the second harmonic of LTE. Note that these super-
harmonic excitations are not seen in the LTI calculations. Also,
the fact that the super-harmonics are also present in the constant
mesh stiffness case of the NLTI model excludes the possibility of
the effects of higher order d¢,, [17].
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_______

Mesh force (kN)
o
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15

Fig. 8 Predicted dynamic mesh loads for one mesh cycle at
the resonant frequency of 340 Hz for the case of time-varying
(TV) and time-invariant (TI) mesh vectors at 509 Nm of applied
pinion torque load (friction coefficient u=0)

Transactions of the ASME



200 800

2 150 600F—-— -+ -
5] * H
o § 50— g == m = s
& g 100 400
ZE

= i
= é 300 oo e oo

~ 50 200k~ - oo

100 | e
U O A i
500 1000 1500 2000 500 1000 1500 2000
Frequency (Hz) Frequency (Hz)

Fig. 9 Mesh load FFT spectra of the time response shown in Fig. 8

It is generally known that any particular tooth modification ighat the inclusion of the effect of changing mesh stiffness due to
aimed to reduce gear noise excitation for a certain operating loeakiation in transmitted load does not imply larger amplitude of
range[27-29. Accordingly, the forced responses for several agdynamic response in the lighter torque load case relative to the
plied mean torque load cases are analyzed. Figure 11 shows tilgher torque ones in spite of its larger transmission error. Under
dynamic mesh force responses of Ig&13 Nm), medium (509 light load condition(113 Nm), tooth separation is seen near 1250
Nm) and high(790 Nm) input torques at the pinion using the samédz. This produces the classical jump phenomenon where the fre-
mesh stiffness to investigate the direct effect of transmission errquency response is discontinuous in the vicinity of the resonant
The dynamic response of the lighter torque load condition th&fequency. In this case, it is noted that the full upper branch was
corresponds to higher magnitude of transmission error, as shopnoduced by decreasing the rotational speed of the drive train,
in Fig. 4, is higher than that of the heavier torque load conditiomvhile the complete lower branch was formed by slowly increasing
However, if the effect of load on mesh stiffness, as illustrated ithe rotational speed. This form of nonlinear behavior depicted is
Fig. 5 is included in the simulation, we get the forced responsasalogous to the classical softening spring case. Figure 14 shows
given by Figs. 12 and 13 for the dynamic mesh and pinion bearitige time history response functions of the dynamic mesh force
forces respectively. Compared to the results of Fig. 11, we can d&dfore and after the jump frequency. Notice the vanishing tooth

load when separation occurs; however no back-collision is

observed.
10° On the other hand, tooth separation is not seen at all for higher
(a) 900 Hz Super-harmonic input torque loads of 509 and 790 Nm. In these cases, the gear
pairs in mesh maintain continuous contact, in spite of the backlash
present. One of possible reasons that tooth separation occurs only
Z 10t at light torque load condition rather than heavier load case is
g because of its larger LTE excitation. In addition, the resonant peak
3 frequencies tend to shift lower as load decreases due to the lower
< averaged mesh stiffness as pointed out previously. Further exami-
S 10°E nation of the frequency response functions of the dynamic mesh
force and bearing force, shown by Figs. 12 and 13 respectively,
reveals some differences in the participating modes. For example,
the dynamic mesh force response possesses a strong resonance
1 " L " 1 "
100 300 400 600 800 1000 1200
Frequency (Hz)
. 10
10
®
z
8 1o 3
:9_ 10 ,Z: 10%k
g £
= G
g 107 s ,
= 10°H
10" b . . - .
200 400 600 800 1000 1200
1
Frequency (Hz) 09 500 1000 1500 2000
Fig. 10 Comparison of the frequency response functions of Frequency (Hz)
the non-linear time-varying (NLTV) and time invariant (NLTI)
cases for 509 Nm of pinion torque. Note that the linear time- Fig. 11 Effect of applied pinion torque load on the dynamic
invariant response (LTI) is also plotted (friction coefficient u  mesh force assuming the same mesh stiffness of 3 X108 N/m
=0) for all 3 cases shown (friction coefficient u=0)
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Fig. 14 Time-history response of the dynamic mesh force near
the jump frequency under light load condition (113 Nm)
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in the pinion bearing force response given by Fig(bl5These
Fig. 12 Effect of applied pinion torque load on dynamic mesh P g P g y Figl

. . - results also suggest that the commonly applied linear theory with
Loﬁrggt\;vlth load-dependent averaged mesh stiffness (no friction only the fundamental harmonic of TE included would result in

loss of super-harmonic effect.
The mean torque load effect on the dynamic transmission error
for the cases of 113 and 226 Nm of pinion torques are shown in
peak at mesh frequency df,=900 Hz for the case 509 Nm Fig. 16. The corresponding LTI solution is also shown for refer-
torque load, which is missing from the bearing force responsgéice. Note that the jump frequencies are dependent on the torque
function. This peak response is in fact the super-harmonic of thead due to the changing averaged mesh stiffness. The primary
9th mode as seen earlier in Fig. 10. For torque load of 790 Nmasonant modes are 1, 3, 7 and 9, which are part of the modal

this peak is barely visible in the bearing force response evéamily related to the gear out-of-phase torsion coupled with trans-
though it appears very strong in the dynamic mesh force. The
differences observed are primarily due to the effect of dynamic

transmissibility between the mesh and bearing support area. Alter- 104
natively, we observe a resonance peak at the lower 800 Hz corre- (a)
sponding to the primary excitation of mode 7. To explain this
phenomenon quantitatively, the following two cases are simu-
lated. The first case assumes a sinusoidal LTE at the fundamental &
mesh harmonic, while the second analysis uses the first three har- 3
monics of LTE. Both calculations are performed by setting the E
mesh stiffness constant. However, the mesh vdtite-of-action <
remains time-varying. The dynamic mesh force response spectra §
are shown in Fig. 1&). Here, the fundamental harmonic of LTE Fundamental
clearly excites mode 7f¢=799.7 Hz), while the second har- harmonic of LTE
monic of LTE provides excitation to mode 94=1799 Hz) that
shows up af ,=900 Hz. This is essentially dt/2 or 2, super-
harmonic frequency as described earlier. However, this is not seen .
1500 2000
Frequency (Hz)
10° ®) .
3 harmonics /\
10} / 0\
800 Hz 113 Nm — ! / /
- o < { 7
2 & if
< 2 ﬁl::i/
%D § V Fundamental
§ m harmonic of LTE
m
107
N 0 500 1000 1500 2000
107 . . Frequency (Hz)
500 1000 1500 2000
Frequency (Hz) Fig. 15 Dynamic mesh force and pinion bearing force due to
the fundamental harmonic of LTE compared to that of the first
Fig. 13 Effect of applied pinion torque load on the pinion bear- three harmonics of LTE. These cases assume 509 Nm of pinion
ing force with load-dependent averaged mesh stiffness (no fric-  torque, time-varying mesh vector, time-invariant mesh stiff-
tion effect ) ness, and no friction effect.
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lation motions. The resonances around 480 Hz for 113 Nm cas 2500 2000 1500 1000 500 0
and 580 Hz for 226 Nm case are not of the primary mode set, bt (b) Frequency (Hz)

super-harmonic response generated by the higher order excitations )
of LTE. To justify this observation, the FFT spectrum of the tim&i9- 18 Waterfall plots of the dynamic response at 509 Nm of
trace response for the 226 Nm case is illustrated in Fig. 17.!fputpinion torque. (&) Pinion bearing force; ~ (b) Dynamic mesh
shows that even though the system is being driven dynamicallyf?artce
fm="580 Hz, the response of thé 3 harmonic component is also
very high, since the third harmonic of LTE coincides exactly with
the 9th mode. order correspond to the damped resonant frequencies of the pri-
Finally, the overall vibration of the system in frequency omary modes similar to the ones shown in lower frequency portion
mesh order domain is presented as 3-dimensional waterfall sinmi-Fig. 12. Also, the first harmonic is found to dominate the vi-
lation of speed sweep plots. The Fourier Transform method tigation spectra more than other higher harmonics especially at
performed on the steady-state response at each speed to obtairotlver running speed where super-harmonics are much less signifi-
individual frequency content. This form of simulation can separatant. This is not the case at higher speeds where the second and
the net vibration levels into several mesh harmonics. Figure #8ird orders are just as significant as the fundamental one.
shows the speed sweep waterfall plots of the dynamic pinion bear-
ing force and mesh force responses for 509 Nm of input torque.
One can see that the response peaks of the fundamental #'Tgshsummary
The present study presents a non-linear, time-varying,
3-dimensional gear mesh coupling characteristic for simulating
5 the dynamics of hypoid gears, and includes the effect of backlash
nonlinearity as well as time-dependent mesh position and line-of-
fu=580Hz action vectors. The time-varying mesh characteristic model is
ak ] based on a 3-dimensional, quasi-static loaded tooth contact analy-
sis. Coupled translation-torsion dynamic model of a generic hy-
poid geared rotor system is formulated employing the non-linear,
f, =1718 Hz time-varying mesh and is also studied numerically to predict the
] vibratory response due to loaded transmission error excitation.
The resonant modes contributing to the response spectra are also
identified, and cases with super-harmonics are illustrated. This
2t 1 study examines for the first time the effect of time-varying mesh
vector on hypoid gear dynamics. Under light torque load condi-
tion, tooth separation is observed leading to the classical jump

DTE (um)

1k ] phenomenon.
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