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1 Introduction 

Gear mesh friction has attracted a number of 
researchers for more than a century [1]. The friction 
between gear teeth plays an important role in 
defining the efficiency of the system as well as 
influencing scoring limits and the dynamical behavior 
including vibration and noise [2,3]. Both sliding and 
rolling actions at the gear mesh contact contribute to 
gear mesh friction.  Sliding friction is a direct product 
of the relative sliding between the two contacting 
surfaces while rolling friction originates from the 
resistance to the rolling motion [4]. Coefficient of 
friction μ  that is used widely in the literature usually 
refers to the coefficient of sliding friction.  

A significant number of studies have been 
published especially within the last forty years on 
friction and efficiency of gear trains as reviewed by 
references [5-7]. The first group of studies focused 
on measuring power losses of gear pair directly [8-
17]. Several others measured μ  using twin-disk test 
machines under conditions simulating a gear pair so 
that this friction coefficient can be used to predict the 
efficiency of a gear pair [18-30, 38-39]. Some of 
these studies [18-25] resulted in well-known and 
widely used empirical formulae for μ . These 
empirical formulae indicate that μ  is a function of a 
list of parameters such as sliding and rolling 
velocities, radii of curvature of the surfaces in 
contact, load or contact pressure, surface 
roughness, and the lubricant viscosity. 

A group of efficiency models [31-33] investigated 
the efficiency of a spur gear pair by assuming a 
uniform μ  along the entire contact surface. A 
tangential friction force along the sliding direction 
was computed by using a given constant friction 
coefficient μ , and the geometric and kinematic 
parameters of the spur gears. As a result, the 
amount of reduction of torque transmitted to the 
driven gear was used to calculate the mechanical 
efficiency η  of the gear pair. These models were 
useful in bringing a qualitative understanding to the 
role of spur gear geometry on efficiency. They fell 
short in terms of the definition of μ , as a user-
defined constant μ  value must be used for every 

contacting point on the tooth surface. However, the 
published experiments on sliding/rolling contacts 
indicate that many parameters might influence μ  
[18-25]. In addition, these studies were limited to 
spur gears and many complicating effects of the 
tooth bending and contact deformations, tooth profile 
modifications and manufacturing errors were not 
included.   

Another group of efficiency models [34-37, 40] 
relied on published experimental μ  formulae such 
as those in references [18-21]. The models in this 
group considered spur [35-37, 40] and helical [34] 
gear pairs and calculated the parameters required to 
define μ  according to the particular empirical 
formula adapted. While they are potentially more 
accurate than the constant μ  models, their accuracy 
is limited to the accuracy of the empirical μ  formula 
used. Each empirical μ  formula typically represents 
a certain type of lubricant, operating temperature, 
speed and load ranges, and surface roughness 
conditions of roller specimens that might differ from 
those of the gear pair that is being modeled. 

The models in the last group are more advanced 
since they use an EHL model to predict μ  instead of 
relying on the user or the empirical formulae [42-54]. 
Among them, Dowson and Higginson [47], and 
Martin [48] used a smooth surface EHL model to 
determine the surface shear stress distribution 
caused by the fluid film, and hence, the 
instantaneous friction coefficient at the contact. 
Adkins and Radzimovsky [49] developed a model for 
lightly loaded spur gears under hydrodynamic 
lubrication condition and assumed that the gear 
tooth is rigid without deflections and local 
deformations. Simon [50] provided an enhancement 
by using point contact EHL model for heavily 
crowned spur gears with smooth surfaces 
considering the elastic displacement of the surface 
due to fluid pressure distributions. Larsson [51] and 
Wang et al [52] analyzed involute spur gear 
lubrication by using a transient thermal-EHL model 
with smooth surfaces. Wu and Cheng [53] developed 
a friction model based on mixed-EHL contacts and 
applied it to calculate the frictional power losses of 
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spur gears. The roughness was modeled such that 
all the asperities have the same radius of curvature 
whose heights have a Gaussian distribution. 
Mihalidis et al [54] included the influence of the 
asperity contacts as well in calculating μ  and hence 
efficiency. These models [47-54] were successful in 
eliminating to a certain extent the need for prior 
knowledge of μ , at the expense of significantly more 
computational effort. While they were relatively 
enhanced in EHL aspects of the problem, the 
applications were limited to simple spur gears with 
ideal load distributions and no tooth bending 
deformations. 

A small number of efficiency studies on helical 
gears were found [34,40,55-58]. Literature on hypoid 
gear efficiency is even sparser. Buckingham [59] 
proposed an approximated formula for the power 
loss of hypoid gears, which is the sum of the losses 
of a spiral bevel gear and a worm gear. Naruse et al 
[8,10] conducted several tests on scoring and 
frictional losses of hypoid gears of Klingelnberg type. 
Coleman [60] used a simple formula to calculate 
hypoid gear efficiency with a constant μ  or a μ  
formula with a very limited number of parameters 
included [61]. Smooth-surface EHL formulations 
were found applied to hypoid gears by Simon [62] 
and Jia et al [63]. 

 
1.1 Objectives and Scope 

Efficiency losses in a gearbox are originated 
from several sources including gear mesh sliding 
and rolling friction, windage, oil churning, and 
bearing friction [34]. When gears are loaded, a gear 
contact under load experiences combined sliding 
and rolling, both of which result in frictional losses. 
The amount of sliding frictional loss is directly related 
to the coefficient of friction, normal tooth load and 
relative sliding velocity of the surfaces while the 
rolling friction occurs due to the deformation of the 
two contacting surfaces. When the contact is 
lubricated, rolling frictional losses are originated from 
the formation of the EHL film [35]. Efficiency can be 
improved by reducing the coefficient of friction via 
precision manufacturing and smoothening the 
contact surfaces and enhancement of lubricant 
properties. Existing approaches of improving 
efficiency are based mostly on experimental trial-
and-error type procedures focusing on such 
parameters, while the predictive capabilities have 
been limited.   

The main objective of this study is to develop a 
mechanical efficiency model for hypoid gears. The 
model allows an analysis of both face-hobbed and 
face-milled hypoid gears. The efficiency model will 
allow two methods of calculating μ , i.e. published 

empirical formulae and a thermal EHL formulation. 
The differences amongst these approaches will be 
described. Parametric studies will be performed to 
investigate the influence of several relevant 
parameters such as speed, load, surface roughness, 
lubricant temperature as well as the assembly errors 
on the mechanical efficiency of hypoid gears. This 
study is focused primarily on the mechanical 
efficiency losses related to tooth friction, including 
sliding and rolling friction, while it relies on the 
published studies in terms of losses associated with 
windage, oil churning and bearings [34,35,64-69] 
when necessary.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Flowchart for the efficiency prediction. 
 
2 Efficiency Model 
2.1 Technical Approach 

Figure 1 illustrates a flowchart of the efficiency 
computation methodology used in this study. Three 
main components are the gear contact analysis 
model, the friction coefficient computation model, 
and the gear pair mechanical efficiency computation 
formulation. The same methodology was applied by 
these authors earlier to spur and helical gears 
successfully [70]. It was also shown the parallel-axis 
efficiency model compares well with the gear pair 
efficiency experiments [77]. The gear contact 
analysis model uses the gear design parameters, 
operating conditions and errors associated with 
assembly, mounting and manufacturing of the tooth 
profile to predict load and contact pressure 
distributions at every contact point during each mesh 
position. Predicted load distribution or contact 
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pressure together with other geometric and 
kinematic parameters are input to the friction 
coefficient model to determine the instantaneous 
friction coefficient ( , , )mzμ θ φ  of every contact point 
( , )z θ  on the gear tooth surface. ( , , )mzμ θ φ  is then 
used by the mechanical efficiency computation 
module to determine the instantaneous efficiency 

( )mη φ  of the gear pair at the m-th incremental 
rotational position defined by angle mφ . The above 
sequential procedure is repeated for an M number of 
discrete positions ( 1,2, ,m M= … ) spaced at an 
increment of φΔ  ( m mφ φ= Δ ) to cover an entire mesh 
cycle.  These instantaneous mechanical efficiency 
values ( )mη φ  are then averaged over a complete 
mesh cycle to obtain the average mechanical 
efficiency loss of the gear pair due to tooth friction. In 
the following sections, main components of this 
methodology as shown in Fig. 1 are described in 
detail. 

 
2.2 Contact Analysis of Hypoid Gears  

A commercial available finite element (FE) 
based hypoid gear analysis package CALYX [71] is 

used as the contact analysis tool. Both face-hobbed 
and face-milled versions of this model are available. 
The model combines FE method away from the 
contact zone with a surface integral formulation 
applied at and near the contact zone [72]. The 
contact analysis model used in this study has a 
special setup for the finite element grids inside the 
instantaneous contact zone. As shown in Fig. 2(a), a 
set of very fine contact grid is defined automatically 
on hypoid gear teeth to capture the entire contact 
zone. These grid cells are much finer than the 
regular size of finite element meshes elsewhere on 
the tooth surfaces and they are attached to the 
contact zones that result in more accurate contact 
analysis. A schematic view of these grid cells is 
shown in Fig. 2(b). Along the face width, there are 
2n+1 divisions, and at each division, there is a 
principal contact point (shown in dot) if contact 
occurs. In the profile direction, there are 2m+1 grid 
cells within each division for capturing potential 
contact points, which would be in contact due to 
tooth deflections and local surface deformations.  

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)        (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)        (d) 
 
Figure 2.  (a) Moving grids for contact zones, (b) moving grid setup, (c) grid in tangent plane for μ  calculation, and (d) 
principal directions and contact ellipse. 
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The μ  calculation is carried out in the grid of 
principal contact point in the tangent plane as shown 
in Fig. 2(c), which is a magnified grid cell for the 
principal contact point q . The surface formed by 
dotted lines, with points 1’ to 8’ along the edges, is 
the grid on the real tooth surface and the plane 
formed by solid lines, with points 1 to 8 along the 
edges, is the grid in the tangent plane for this 
particular contact point q . Points 2(2’), 4(4’), 6(6’) 
and 8(8’) are the mid point at each side of the grids. 
Vector t26 that connects point 2 and 6 is 
approximated as the instant line of contact and 
vector tp26t is normal to t26 in the tangent plane. n is 
the surface normal vector at the contact point q . 
When μ  is obtained for this principal contact point, 
same μ  value will be assigned to the potential 
contact point within the same face width division. 
While the load distribution and contact pressure at 
each grid is provided by the contact analysis model, 
surface velocities and curvatures are calculated in 
the following sections. 
  
Definition of Principal Contact Points.  Assume 
pinion surface and gear surface are defined by 

1 1 1( , )s tr  and 2 2 2( , )s tr  respectively, where 1s , 1t  
and 2s , 2t  are the surface curvilinear parameters. 
The principal contact point is determined and 
located when 1r  and 2r  become the closest to each 
other [72]. Surface 1 1 1( , )s tr  was discretized into a 
grid of points 1 1 1 1( , )ij i js t=r r  and for each of these grid 
points, an effort was made to locate 2 2 2 2( , )ij i js t=r r  
such that ( ) ( )1 1 1 2 2 2, ,s t s t−r r  is minimized with 
respect to the variable 2s  and 2t . This extremization 
is equivalent to solving the following system of 
nonlinear equations [72] 
 

 
1 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2

( , ) ( , ) 0

( , ) ( , ) 0

ij i j i j i

ij i j i j j

s t s t s

s t s t s

⎧ ⎡ ⎤− ∂ ∂ =⎪ ⎣ ⎦
⎨

⎡ ⎤− ∂ ∂ =⎪ ⎣ ⎦⎩

r r r

r r r
 (1) 

 
First, solutions from Eq. (1) for each of the grid point 

1ijr  were obtained by the Newton-Raphson method. 
Then a new grid, which is finer than the original grid, 
was set up around the point 1ijr  for which the 
separation 1 2ij ij−r r  was the smallest. This search 
process is repeated several times with progressively 
smaller grids to locate the principal contact point 
[72]. The pinion and gear surfaces were divided in 
several parts along the face width.  In each face 
width division, if there is contact, the principal 
contact is determined and then a set of grids is laid 
out above and below the principal contact point. 
These grids are added for candidate contact points 
that will likely be in contact due to elastic 
deformations of the two contacting surfaces.  

Calculation of Principal Curvatures and Principal 
Directions.  According to differential geometry [73], 
for two surfaces in contact at a common point, the 
principal curvatures and principal directions at the 
common point can be determined if the coefficients 
of the first and second fundamental form of the 
surface are given. Let (1)κ  and (2)κ  be the two 
eigenvalues of the eigen problem 
 
 κ=Nλ Mλ  (2) 
 
where  

 1

2

λ
λ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
λ ,     s s s t

t s t t

∂ ∂ ∂ ∂⎡ ⎤⋅ ⋅⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥=
∂ ∂ ∂ ∂⎢ ⎥⋅ ⋅⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

r r r r

M
r r r r

,  

 

2 2

2

2 2

2

s ts

t s t

⎡ ⎤∂ ∂
⋅ ⋅⎢ ⎥

∂ ∂∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥⋅ ⋅
⎢ ⎥∂ ∂ ∂⎣ ⎦

r rn n
N

r rn n

,     s t

s t

∂ ∂
×

∂ ∂=
∂ ∂

×
∂ ∂

r r

n
r r

 . 

 
Here, n is the unit normal vector, and s  and t  are 
the surface curvilinear parameters at the common 
contact point. Matrices M  and N  contain the 
coefficients of the first and second fundamental form 
of the surface, respectively. Then (1)κ and (2)κ are 
the principal normal curvatures. If the two 
corresponding eigenvectors (1)λ  and (2)λ  are 
normalized such that ( ) T ( ){ } 1i i =λ Mλ , 1,2i = , then the 
two unit vectors in the principal directions 
corresponding to the principal curvatures are defined 
as [72] 
  

 (1) (1) T{ }
s
t

∂ ∂⎧ ⎫
= ⎨ ⎬∂ ∂⎩ ⎭

r
e λ

r
 ,  (3a) 

 (2) (2) T{ }
s
t

∂ ∂⎧ ⎫
= ⎨ ⎬∂ ∂⎩ ⎭

r
e λ

r
. (3b) 

 
Determination of The Orientation of the Contact 
Ellipse.  Assume q  is the contact point of surface 

1∑  and surface 2∑ .  Let fe  and he  be unit vectors 
of principal directions, and fκ  and hκ  be principal 
curvatures of surface 1∑  at point q . Let se  and qe  
be unit vectors of principal directions, and sκ and qκ  
be principal curvatures of surface 2∑  at point q . 
These values of principal directions and curvatures 
can be solved by Eq. (2). The angle σ , formed by 

fe  and se , and the angle α  that determines the 
orientation of the coordinate axes x  and y  with 
respect to fe  as shown in Fig. 2(d) can be obtained 
as [72] 
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1tan s h

s f
σ − ⎛ ⎞⋅

⎜ ⎟=
⎜ ⎟⋅⎝ ⎠

e e
e e

, (4a) 

1 2

1 2

1 sin 2tan
2 cos2

g
g g

σα
σ

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (4b) 

 
where 1 f hg κ κ= − , and 2 s qg κ κ= − . Then the two 
directions x  and y  can be represented as 

 
cos sinf hx α α= +e e , (5a) 

sin cosf hy α α= − +e e . (5b) 
 
Calculation of Surface Velocities and Radii of 
Curvatures in the Desired Directions.  Consider that 
two bodies are in point contact or line contact in 
space and the two contacting surfaces, 1∑  and 2∑ , 
are in continuous tangency at the point of contact.  
The position vectors and unit normals of surface 1∑  
and surface 2∑  must be equal.  Based on this 
consideration, the following two relations can be 
obtained [74] 

 
(12)(2) (1)

r r= +υ υ υ      (6a) 

 (12)(2) (1)
r r= + ×n n ω n� �  (6b) 

 
where ( )i

rυ  is the relative velocity vector of the 
contact point respect to the surface as it moves over 
the surface i∑ , ( )i

rn�  is the velocity of the tip of the 
surface unit normal in its motion over the surface 

i∑ , n is the surface unit normal vector, and 
(12) (1) (2)= −ω ω ω . Equations (6a,b) are then used for 

the derivation of curvature relations of mating 
surfaces. As shown in Fig. 2(d), velocity vectors of 
point q  on surface 1∑  can be represented in 
coordinate system ( , )a f hS e e  as 
 

 (1) (1)(1) T
r f hυ υ⎡ ⎤= ⎣ ⎦υ ,     (7a) 

 (1) (1)(1) T
r f hn n⎡ ⎤= ⎣ ⎦n� � � . (7b) 

 
Velocity vectors of point q  on surface 2∑  can be 
represented in coordinate system ( , )b s qS e e  as 
 

 (2) (2) (2) T
r s qυ υ⎡ ⎤= ⎣ ⎦υ ,       (8a) 

 (2) (2) (2) T
r s qn n⎡ ⎤= ⎣ ⎦n� � � .  (8b) 

 
According to Rodrigues’ formula, vectors ( )i

rυ  and 
( )i
rn�  are collinear for the principal directions, and they 

are related to the principal directions as 
( )( ) ( )
,
ii i

r rI IIκ= −n υ�  [74], where ( )
,
i

I IIκ  are the principal 

curvatures of surface i∑ , 1i = , 2 . These principal 
surface are fκ and hκ  for surface 1∑  and sκ and qκ  
for surface 2∑ . With the aid of Rodrigues’ formula, 
Eqs. (7,8) are rearranged together with appropriate 
coordinate transformations to get a system of linear 
equations as  [74] 
 

 

(2)
11 12 15

(2)
21 22 25

(1)33 34 35

(1)43 44 45

0 0
0 0

0 0
0 0

h

f

s

q

b b b
b b b

b b b
b b b

υ

υ

υ

υ

⎧ ⎫
⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥=⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

 (9) 

where  
 2 2

11 cos sinf s qb κ κ σ κ σ= − + + ,       
 12 21 sin cos sin coss qb b κ σ σ κ σ σ= = − , 
 2 2

22 sin cosh s qb κ κ σ κ σ= − + + ,   
 2 2

33 cos sins f hb κ κ σ κ σ= − − , 
 34 43 sin cos sin cosf hb b κ σ σ κ σ σ= = − ,  
 2 2

44 sin cosq f hb κ κ σ κ σ= − − , 
 (12)(12)

15 ( ) ( )h f fb κ= − ⋅ − ⋅ω e υ e ,  
 (12)(12)

25 ( ) ( )f h hb κ= ⋅ − ⋅ω e υ e , 
 (12)(12)

35 ( ) ( )q s sb κ= − ⋅ − ⋅ω e υ e ,  
 (12)(12)

45 ( ) ( )s q qb κ= ⋅ − ⋅ω e υ e . 
  
Equation (9) can then be solved to obtain the 
surface velocities in the principal directions. The 
surface velocities in the direction of contact line and 
in the direction that is normal to the contact line for 
surface 1∑  and surface 2∑ , as shown in Fig. 2(d), 
can then be obtained by coordinate transformation 
as follows 
 

 
(1) (1)

2 2
(1)(1) 2 2

cos sin
sin cos

p s

qt

V q q
q qV

υ

υ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (10a) 

 
(2)(2)

1 1
(2) (2)1 1

cos sin
sin cos

p f

t h

V q q
q qV

υ

υ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (10b) 

 
Then, sliding and rolling velocities in the direction of 
the contact line can be obtained as (1) (2)

st t tV V V= −  
and (1) (2)

rt t tV V V= + , respectively. Sliding and rolling 
velocities in the direction that is normal to the 
contact line are (1) (2)

sp p pV V V= −  and (1) (2)
rp p pV V V= + , 

respectively. The resultant sliding and rolling 
velocities are given as 2 2 0.5( )stotal st spV V V= +  and 

2 2 0.5( )rtotal rt rpV V V= + , respectively. Normal curvatures 
in the direction of the contact line, ( )i

ncκ , and in the 
direction that is normal to the contact line, ( )i

nnκ , can 
be obtained as follows 
 
 ( ) ( )( ) 2 2cos ( / 2 ) sin ( / 2 )i ii

nc i iI IIq qκ κ π κ π= + + +  (11a) 

 ( ) ( )( ) 2 2cos sini ii
nn i iI IIq qκ κ κ= +  (11b) 
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Table 1 Empirical friction coefficient formulae considered in this study ( kν  and ν  are given in centistokes and centipoises, 
respectively). 
 

Formula and author Applicable parameter ranges Specific units 
Drozdov and Gavrikov [21]: 

1[0.8 13.4]k s rV Vμ ν φ −= + +  
4 3

max0.47 0.13 (10) 0.4(10) kPφ ν− −= − −  

[4,500]kν ∈  
15sV ≤ , [3,20]rV ∈  

max [4000,20000]P ∈  

,s rV V = /m s  

maxP = 2/kg cm  

O’donoghue and Cameron [20] 
11/8 1/3 1/ 6 1/ 20.6 ( 22) /35 s rS V V Rμ ν

−
⎡ ⎤= +⎡ ⎤⎣ ⎦ ⎣ ⎦  

 S  = inμ , CLA 
,s rV V = /in s , R  = in  

Misharin [18] 
0.250.325 s r kV Vμ ν −= ⎡ ⎤⎣ ⎦  

/ [0.4,1.3]s rV V ∈  
2,500P ≥ , [0.02, 0.08]μ ∈  

,s rV V = /m s  

P  = 2/kg cm  
ISO TC60 [41] 

0.250.12 ( )rW S RVμ ν′= ⎡ ⎤⎣ ⎦  
 rV = /m s , R  = mm  

S  = mμ , RMS, W ′ = /N mm  

Benedict and Kelley [19] 
8

10 2
50 3.17(10)0.0127

50 s r

WLog
S V V

μ
ν

⎡ ⎤′⎡ ⎤= ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦
 

50 3
50 S

≤
−

 S  = inμ , RMS 
W ′ = /lbf in  

,s rV V = /in s  

 
 
where, iq  is the angle that is formed by the direction 
of interest and fe  and se  for 1i =  and 2i = , 
respectively. Then the radius of curvature is simply 
the inverse of the corresponding normal curvature 
value in Eq. (11). 
 
2.3 Friction Coefficient Models 
Empirical Friction Coefficient Formulae.  A large 
number of empirical formulae for coefficient of 
friction can be found in the literature. Most of these 
formulae obtained from measured data of twin-disk 
type tests were in the following general form  

 
 ( )max, , , , , ', , ,k s rf V V R W P Sμ ν ν= … . (12) 

 
Here kν  and ν  are kinematic and dynamic viscosity 
of the lubricant, both of which are measured at the 
oil inlet, and are function of inlet oil temperature at 
ambient pressure. Parameters sV , rV , and R  
denote relative surface sliding velocity, sum of the 
rolling velocities and the combined radius of 
curvature, respectively. The load parameters are the 
unit normal load 'W  or the contact pressure maxP .  
S  is a surface finish parameter, representing the 
initial composite surface roughness of the two 
contacting surfaces.   

A representative set of commonly cited μ  
formulae given in Table 1 are considered in this 
study. These formulae are quite different from each 
other as they consider different parameters and 
parameter ranges. Formulae by Drozdov and 
Gavrikov [21] and Misharin [18] include neither any 
surface roughness parameter nor a radius of 

curvature R , while others consider a surface 
roughness parameter S  (root-mean-square (RMS) 
or centerline average (CLA)). ISO TC60 [41] formula 
does not include sV  while formulae of O’donoghue 
and Cameron [20] and Misharin [18] do not consider 
the load as a parameter and hence they should not 
be able to account for any load effects on μ .  In 
addition, each formula listed in Table 1 is valid for a 
range of key system parameters.  For instance, the 
formula proposed by Drozdov and Gavrikov is valid 
for [4,500]kν ∈  centistokes, 15sV ≤ sm / , [3,20]rV ∈  

/m s  and max [4000,20000]P ∈  2/kg cm , and would be 
suitable for a gear application only if these gear 
contact parameters stay within these ranges. 
 
Calculation of Friction Coefficient Using an EHL 
Model.  According to EHL theory, distribution of the 
film pressure and thickness across an elastic 
lubricated contact can be obtained by solving the 
transient Reynolds equation simultaneously with a 
number of other equations including the film 
thickness equation, the energy balance equation, 
viscosity-pressure-temperature relationship, density-
pressure-temperature relationship, and the load 
equation [75]. In this study, a deterministic EHL 
model based on the model proposed by Cioc et al 
[75] will be used. Assuming that a hypoid gear pair 
exhibits line contact conditions, a non-dimensional 
transient Reynolds equation is written as  
 

( ) ( )
3

0
( )( )
12

hP b H Ps H H
X u X X t

ρ ρ ρ
ν ν

⎡ ⎤∂ ∂ ∂ ∂
= +⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (13) 
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with the boundary conditions of 0P =  at inlet, and 
0P =  and 0P X∂ ∂ =  at outlet. In Eq. (13), b  is the 

half width of Hertzian contact zone, and X  and H  
are the dimensionless coordinate and the 
dimensionless film thickness, respectively, both 
normalized by b , hP  is the maximum Hertzian 
pressure, ν  is the dimensionless dynamic viscosity 
normalized by 0ν , which is the dynamic viscosity at 
oil inlet, and ρ  is the dimensionless lubricant 
density normalized by the lubricant density at inlet. 
u  is the rolling velocity defined as 1 2( ) 2u u u= +  and 
t  is the dimensionless time defined as /t ut b= . For 
a Newtonian fluid 1s =  while s  is defined by a 
nonlinear function for a non-Newtonian fluid [75]. 
The film thickness equation has the form  

 

( )20 ( , )( ) ,
2

h b d X tH X S X t
b R b

= + + +  (14) 

 
where, 0h  is the reference film thickness, ( , )d X t  is 
the total elastic deformation, ( ),S X t  is the 
composite surface profile  irregularities, and R  is the 
combined radius of curvature of the contact. A two-
slope viscosity-pressure-temperature model [75] is 
used here as  
 

 

1

2 3
0 1 2 3

1 2

[ ( 1)]

[ ( 1)]

[ ( ) ( 1)]

, ,

, ,

, .t t

G P T
a

c c P c P c P T
a b

G P G P P T
b

e P P

e P P P

e P P

γ

γ

γ

ν

− −

+ + + − −

+ − − −

⎧ <
⎪
⎪= ≤ ≤⎨
⎪

≤⎪⎩

 (15) 

 
Here, 1 1 hG Pα= , 2 2 hG Pα= , γ  is the dimensionless 
coefficient of thermal expansion, and T  is the 
dimensionless film temperature normalized by the oil 
temperature at inlet. tP  is the transitional pressure, a 
threshold value beyond which an increase in 
viscosity changes its slope from 1α  to 2α . Transition 
pressure values of 0.7a tP P=  and 1.4b tP P=  are used 
with 380tP =  MPa as suggested by Allen for mineral 
oils [75]. The coefficients 0c  to 3c  are determined 
such that that transition between the two slopes is 
smooth. In addition, the following density-pressure-
temperature relationship is considered  
 

 ( )1 1 1
1

a

b

C P T
C P

ρ β
⎛ ⎞

⎡ ⎤= + − −⎜ ⎟⎜ ⎟ ⎣ ⎦+⎝ ⎠
 (16) 

 
where 90.6 10a hC P−= × , 91.7 10b hC P−= × , and β  is the 
dimensionless coefficient of thermal expansion [75]. 

Since a thermal EHL model is sought, the 
energy equation for non-Newtonian lubricants is 
given as 
 

( ) ( )

2
1

1 2 3 42 2 2
1

L

L

T T P TC U C TU C C
X X tZ

τ τρ ρ
ν τ τ

∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂∂ −
  

 (17) 
 

In Eq. (17), coefficients iC  ( i = 1 to 4) are functions 
of thermal parameters, Z  is the dimensionless 
coordinate normalized by b , U  is the dimensionless 
fluid velocity, 1τ  is the dimensionless shear stress of 
surface 1, and Lτ  is the dimensionless limiting shear 
stress. Finally, the load distribution predicted should 
be such that the normal load applied at the contact 
is balanced, i.e. 
 

( , ) ( , )out

in

X
cX

W P X t P X t dX⎡ ⎤= +⎣ ⎦∫  (18) 

 
where W is the dimensionless unit load applied, inX  
and outX  are the inlet and outlet of computational 
domain for the contact zone, cP  is the asperity 
contact pressure for where asperity contact occurs.  
This load balance equation is checked periodically 
and the reference film thickness 0h  in Eq. (14) is 
adjusted, if necessary. 

In reference [75], Eqs. (13-18) were solved 
numerically by using the finite difference method.  
Using the same methodology, distributions of the 
pressure ( )p x , viscosity ( )xν , and fluid film 
thickness ( )h x  across the lubricated contact zone 
are predicted. In the case of no asperity contacts, 
the surface shear stress distribution across the 
Hertzian contact width b x b− ≤ ≤  is given by 

 

 1 2( )( ) ( )
2 ( )

h x p u ux x
x h x

τ ν∂ −
= − +

∂
. (19) 

 
Typical ground or shaved gear tooth surfaces cannot 
be considered smooth unless they are polished 
chemically or mechanically. The actual surface 
roughness amplitudes are typically comparable to 
the fluid film thickness. As a result, the portion of the 
normal load might be carried by actual asperity 
contacts resulting in mixed- or partial-EHL 
conditions. In this case, Eq. (19) is still valid at the x 
locations where a fluid film is maintained between 
the two surfaces. At the x locations where actual 
asperity contacts take place  
 
 ( ) ( )sx p xτ μ=  (20) 
 
where sμ  is the friction coefficient between the 
contacting asperities. Consequently, the friction 
traction force per unit width of the contact can be 
written as 
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 ( )t r sF x dx F Fτ ′ ′= = +∫  (21) 
 
where rF ′  is the rolling friction per unit width of the 
contact that comes from the viscous flow in the 
formation of the film thickness and squeeze motion 
during pure rolling, 
 

 ( )
2r

h x pF dx
x

∂′ = −
∂∫  (22) 

 
and sF ′  is the sliding friction per unit width of the 
contact that is caused by fluid shear and the asperity 
contact, respectively [76] 
  

 1 2( ) ( )
( )s s

u uF x dx p x dx
h x

ν μ−′ = +∫ ∫ . (23) 

 
Finally, the coefficient of sliding friction of the entire 
section of contact is given by sF Wμ ′ ′=  where W ′  is 
the applied normal load per unit width of contact.   

With the exception of sμ  in Eq. (23) that must be 
defined in cases when asperity contact occurs, the 
approach outlined above to compute μ  is entirely 
physics-based. One disadvantage of this approach 
is that it requires significant computational effort 
since a large number of individual EHL analysis 
must be carried out for each discretized segment 
along the lines of contact at each rotational gear 
position considered.   
 
2.4 Gear Efficiency Computation 

Once the coefficient of friction ( , , )mzμ θ φ  at each 
contact point ( , )z θ  at each rotational angle mφ  
( 1,2, ,m M= … ) are known, the sliding friction force at 
each contact position can be calculated by  

 
 ( , , ) ( , , ) ( , , )s m m mF z z W zθ φ μ θ φ θ φ=  (24) 
 
where ( , , )mW z θ φ  is the normal load at the contact 
point of interest. The rolling friction force rF  can be 
obtained by multiplying rF ′  in Eq. (22) with the width 
of the contact. When the empirical formulae like the 
ones listed in Table 1 are used, rF  can be estimated 
from an isothermal EHL contact [53] as 
 
 0.658 0.01264.318( ) /roF GU Q R α= � ��   (25) 
 
where G Eα ′=�  is the dimensionless material 
parameter, 0 1 2( ) ( )U u u E Rν ′= +�  is the dimensionless 
speed parameter, ( )Q W E R′ ′=�  is the dimensionless 
load parameter, R  is the effective radius of 
curvature, α  is the pressure viscosity coefficient. In 
order to account for the effect of temperature rise at 
high speed conditions, a thermal reduction factor Tϕ  

can be used to modify this isothermal formula such 
that 
 
 r T roF Fϕ=   (26) 
  
where Tϕ  is defined in reference [53] as 
 

 
* 0.42

0.83 * 0.64
1 13.2( )( )

1 0.213(1 2.23 )( )
h

T
P E L

SR L
ϕ

′−
=

+ +
, (27) 

 
2

*

0

( )e

f

VvL
t K

∂
= −

∂
. (28) 

 
Here, v  is the absolute viscosity in cPs, 0t  is the 
lubricant temperature at inlet in degrees C, fK  is 
the lubricant thermal conductivity in W/m CD , SR  is 
the slide-to-roll ratio that is defined as 

1 2 1 22( ) ( )SR u u u u= − + , and 1 2( ) 2eV u u= + . 
The instantaneous efficiency of a gear pair is 

defined as the ratio of the instantaneous output 
power to the input power  

 

 ( ) ( )out m out
m

in in

L
L

φ ωη φ
ω

=  (29) 

 
where ( )out mL φ  and inL  are the values of torque 
acting on the output and input gears and outω  and 

inω  are the output and input rotational speeds, 
respectively. When only frictional losses are 
considered, the instantaneous output power can be 
written as the difference between the input power 
and the frictional power losses and hence the 
efficiency can be expressed as  
 

( ) ( ) ( )1 2 1 2
1

11
Q

m s r qin in q
F u u F u u

L
η φ

ω =

⎡ ⎤= − − + +⎣ ⎦∑  (30) 

 
where the summation from 1q =  to Q  is the sum of 
sliding frictional and rolling frictional power losses at 
position mφ  and Q  is the total number of load grids 
at the same mesh position. 
 
2.5 Validation of Friction Coefficient Models 
Comparison of Empirical and the EHL-Based μ 
Models.  In order to facilitate numerical comparisons 
among these formulae and the EHL model 
predictions, an example line contact problem with 
the following parameters is considered: 

 
5 , 5 , 2e hR mm V m s P GPa= = = , 

0 10 , 13 , 0.07k rmscPs cSt S mν ν μ= = = . 
 
With these parameters, the calculated μ  values 
from  published  empirical  formulae  in  Table 1, and  
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Figure 3. Comparison of friction coefficient models for 

5R = mm, 5eV = m/s, 2hP = GPa, 0 10ν =  cPs, 13kν =  
cSt, and 0.07rmsS = μm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Comparison between published empirical friction 
coefficient formulae and the measured traction data. 
 
from the thermal EHL model described in section 2.3 
are plotted as a function of SR  in Fig. 3. Here, three 
main discrepancies between the published empirical 
formulae and the thermal EHL-based μ  are evident.  
(i) When 0SR = , EHL model predicts nearly zero 
friction, while published empirical formulae all predict 
their largest μ  values.  This is because sV  is in the 
denominator of most of these formulae. This implies 
that the friction coefficient is largest at the pitch point 
where there is no relative sliding in total conflict with 
the physical intuition and the EHL model prediction. 
(ii) The overall qualitative shape of the μ  versus SR  
curve from the EHL model is very different from 
those obtained from the other μ  formulae. (iii) The 
thermal EHL model predicts much lower μ  values 
than the empirical formulae, regardless of the value 
of SR . Since the differences amongst the individual 
μ  formulae as well as between the EHL model and 
these formulae are very significant, neither can be 

used in the efficiency model with confidence since 
the resultant efficiency predictions will differ greatly.  
Only way to describe these discrepancies is to 
compare the predicted coefficients of friction to the 
measured ones.   

A comparison between the published empirical 
μ  formulae and the measured traction data is 
shown in Fig. 4. The discrepancies between these 
published formulae and the fitted measured data are 
quite similar to those between the same formulae 
and the EHL model predictions in Fig. 3. In Fig. 4, 
for 10eV =  m/s and 1.0hP =  GPa, the measured and 
predicted μ values differ in both magnitudes and 
qualitative shape. The published empirical formulae 
of others give larger μ  values regardless the value 
of SR . The predicted μ  values become very large 
as SR  approaches zero while the measured μ  value 
is almost zero at 0SR = . Typical gear pairs might 
have SR  values between –1 and 1. The same 
differences were observed at other load and speed 
conditions as well. The efficiency values predicted 
by using these published μ  formulae would be 
much lower than the actual mechanical efficiency 
values. Therefore, it can be concluded here that 
these formulae should not be used for gear 
efficiency studies and the results of previous 
efficiency models that employed these formulae [34-
37, 40] should be taken cautiously. On the other 
hand, EHL model predictions agree well with the 
measured friction coefficient data for typical ranges 
of speed, load, and sliding ratio. The μ  values 
predicted by the EHL model and the measured 
values represented by the fitted formula are 
compared in Fig. 5 for 1.0hP =  GPa and 10eV =  and 
20  m/s.  

Based on this comparison, the EHL-based 
model can be considered valid.  This is a positive 
outcome since the EHL model is physics-based 
requiring no empirical parameters. However, it 
presents a major difficulty especially when used in a 
gear efficiency model. Each EHL analysis takes 
several minutes of computations (more than 2 
minutes of CPU time on a 3.0 GHz PC) and a 
complete gear efficiency analysis might require a 
few hundred EHL analyses. Therefore, this 
approach is not practical for real-life engineering 
applications requiring many parameter studies. In 
order to overcome this disadvantage, a design of 
experiment (DOE) of the EHL model is performed. 
Results from DOE were processed by multiple linear 
regression analysis to obtain a new μ  formula 
based on the EHL approach to be used in the gear 
efficiency models, eliminating the difficulties of this 
approach in terms of the computational demand.  
The new formula has the form 
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Figure 5. Comparison of EHL model predictions and the 
measured data at 1hP =  GPa and various eV  values.  
 
 3 720 6 8( , , , )

0
h b bbf SR P S b b

ehe P SR V Rνμ ν=  (31) 
 
where  
 

10 0log ( )
0 1 4 10 0 5 9( , , , ) log ( ) hSR P S

h hf SR P S b b SR P b e b eνν ν −= + + +
 
Constants 1b  to 9b  vary based on type of lubricant 
used. This formula includes all the key features of a 
gear contact, namely SR , eV , hP , S , R , and 0ν . It 
can be directly used to calculate μ  instead of 
running extremely time-consuming EHL analyses in 
real time, while still maintaining acceptable 
accuracy. It also avoids numerical issues associated 
with any EHL model. The same equation was used 
earlier in a spur gear mechanical efficiency 
prediction model that was validated through high-
speed spur gear efficiency measurements [77].  

 
3 Results and Discussions 

With all necessary parameters at each contact 
point calculated by using the formulations and the 
contact model presented in previous sections, 
instantaneous efficiency of a hypoid gear pair can be 
calculated by applying the methodology defined in 
Fig. 1. A face-hobbed hypoid gear pair borrowed 
from an automotive application will be used here as 
an example system to demonstrate the hypoid gear 

efficiency methodology. The main gear blank 
dimensions of this example system are listed in 
Table 2. The pinion member is generated and the 
ring gear is non-generated. A typical gear oil 75W90 
is used as the lubricant whose properties are listed 
in Table 3. 
 

Table 2 Example hypoid gear pair 
 

Parameters Pinion Gear 
Teeth number 12 41 
Hand of spiral Left Right 

Spiral angle (deg) 49.97 24.07 
Outer cone distance (mm) 103.5 127.7 

Face width (mm) 41.9 34.2 
Face angle (deg) 28.6 58.7 
Pitch angle (deg) 28.6 58.7 

Front/Back angles (deg) 28.6 58.7 
Pinion offset (mm) 44 
Shaft angle (deg) 90 

Material density (kg/m3) 7800 
Specific heat (J/kg K) 500 

Thermal conductivity (W/m K) 45 
Young’s modulus (Pa) 2.07x1011 

Poisson’s ratio 0.3 
 

Table 3 Lubricant parameters 

Inlet temperature (K) 333 
Viscosity (Pa s) 0.036 
Density (kg/m3) 815 

Pressure viscosity coefficient (1/Pa) 1.344x10-8 
Temperature viscosity coefficient 0.0217 

Thermal conductivity (W/m K) 0.132 
Coefficient of thermal expansion 6.5x10-4 

Specific heat (J/kg K) 2000 
 

 
Figure 6 illustrates the contact pressures 

distribution at all the contact zones on the hypoid 
ring gear in contact at a given mesh position. As 
discussed earlier, contact pressures, radii of 
curvatures, sliding velocities, and sum of rolling 
velocities are four of the key geometry-related 
parameters used in the friction model. The 
distributions of these parameters along the contact 
lines at the same mesh angle 1φ φ=  are shown in 
Fig. 7. It is clear from this figure that all four key 
parameters vary significantly along the contact lines. 
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Figure 6. Contact pressure distribution prediction of 
CALYX at a given mesh position 1φ . 

 
 (a) max 4.4P =  GPa, min 0.036P =  GPa 

 
 
 
 
 
 
 
 
 

 (b) max 76R =  mm, min 2R =  mm 
 
 
 
 
 
 
 
 

 (c) ,max 1.8sV =  m/s, ,min 0.02sV =  m/s 
 
 
 
 
 
 
 
 

 (d) ,max 8.0rV =  m/s, ,min 0.6rV =  m/s 
 
 
 
 
 
 

 
Figure 7. Distribution of (a) contact pressure, (b) 
combined radii of curvature, (c) sliding velocity, and (d) 
sum of rolling velocities along the normal of the instant line 
of contact at mesh position 1φ . 0.1S mμ= , 1,600inL Nm= , 

1,000pN rpm= , and 60oilT C= D . 

(a) EHL-based μ formula 
max 0.0857μ = , min 0.0063μ =  

 
(b) Actual EHL analysis 

 max 0.1023μ = , min 0.0156μ =  

Figure 8. Distribution of 1( , , )zμ θ φ  at every mesh grid of 
principal contact points predicted by using (a) the EHL-
based μ  formula, and (b) actual EHL analysis. 0.1S mμ= , 

1,600inL Nm= , 1,000pN rpm= , and 60oilT C= D . 
 

The values of 1μ(z,θ, )φ  at each of the principal 
contact points along the instantaneous lines of 
contact are calculated by using the new formula in 
Eq. (31) as well as the actual EHL model are shown 
in Fig. 8 for 0.1S mμ= , 1,600inL Nm= , 1,000pN rpm= , 
and 60oilT C= D . For the EHL model prediction, a 
measured rough surface profile with 0.1RMS mμ=  
like the one shown in Fig. 9 is used. As shown in 
Fig. 8, the predicted μ  values show certain amount 
of variations along the instantaneous lines of 
contact. The μ  values become especially large 
when the contact occurs near the edge where 
contact pressures are large as shown in Fig. 7. The 
variations of μ  predicted at each contact point, 
together with the variations of the contact pressures 
and the sliding and rolling velocities, result in the 
variations of the power losses at each of these 
locations. 

Figure 10 shows the variation of the average 
value of the instantaneous coefficient of friction at 
every mesh angle, ( ) [ ( , , )]m mAverage zμ φ μ θ φ= , and the 
corresponding instantaneous mechanical efficiency 

( )mη φ  of the gear pair. It is evident that the two EHL 
related models are in reasonably good agreement 
and give an average efficiency of about 98η =  
percent for 0.1S mμ= , 1,600inL Nm= , 1,000pN rpm=  
and 60oilT C= D .  

A parametric study on the mechanical efficiency 
of the example hypoid gear pair is performed next. 
Figure 11 shows the variation of η  as a function of 

pN  for 500inL =  and 1,000 , given 0.4S = μm and 
60oilT C= D . inL  has a negligible influence on η  
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within this load range and curves for 500inL =  and 
1,000  Nm are almost identical. However, η  
increases quite significantly with an increase in pN . 
The mechanical efficiency values at 500pN =  and 
2,000  rpm differ by nearly 2 percent, which is due to 
very small rolling velocities at low speed that cause 
the friction coefficient increase significantly. 

The combined influence of the surface 
roughness parameter S  and the oil inlet temperature 

oilT  is illustrated in Fig. 12 for 1,600inL =  Nm and 
1,000pN = rpm. Both oilT  and S  have a significant 

influence on η . For instance at 60oilT C= D , 98.3η =  
percent for a smooth surface while it is 96.3 percent 
for 0.6S =  μm. At the same roughness value of 

0.6S = μm, elevating lubricant temperature to 100 CD  
improves the efficiency from 96.3 percent to nearly 
97.5 percent, partly due to the reduction in viscosity 
due to temperature increment [77,78]. 

Influence of hypoid gear assembly tolerances or 
errors, H, V, R, and β that are defined in Fig. 13 on 
η  are shown in Fig. 14. In Fig. 15, H, V, and R are 
all varied from –0.5 mm to +0.5 mm and β is varied 
from –0.1 degree to +0.1 degree. From Fig. 14, it is 
found that shaft angle error β has almost no 
influence on η , while influence of other three errors 
on η  is very limited for the cases considered. 

 
4 Conclusions 

A model for the prediction of hypoid gears has 
been proposed and applied to a face-hobbed hypoid 
gear pair as a representative example. Formulations 
for the required surface velocities and radii of 
curvature have been presented. Influence of 
operating conditions, surface finish and lubricant 
temperature, as well as assembly errors on the 
efficiency of hypoid gears have also been quantified. 
While hypoid gear pair is defined by a very large 
number of parameters, extensive generic analyses 
were not possible to obtain information about the 
influence of each parameter on the mechanical 
efficiency of the hypoid gear pair, still several 
consistent trends were observed. The rotational 
speed, surface roughness amplitude, and lubricant 
temperature are all very influential on the 
mechanical efficiency of a hypoid gear pair. 
Meanwhile, the parameters such as load and 
assemble errors have a limited or no influence on 
hypoid efficiency. 
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Figure 9. A measured surface roughness profile used in 
the EHL analysis. 
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Figure 10. ( )μ φ and ( )η φ predicted by using the friction 
coefficient formulae developed in this study and the EHL 
model. 0.1S mμ= , 1,600inL Nm= , 1,000pN rpm= , and 

60oilT C= D .
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Figure 11. Influence of inL  and pN  on η ; 0.4S mμ=  and 

60oilT C= D . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Influence of S  and oilT  on η ; 1,600inL Nm=  
and 1,000pN rpm= . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 13. Example hypoid gear pair geometry and 
illustration of errors, V: pinion movement along offset, H: 
pinion axial movement, R: pinion movement along gear 
axis, β: shaft angle error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Influence of errors (a) H, (b) V, (c) R, and (d) β 
on η . 0.4S mμ= , 1,600inL Nm= , 1,000pN rpm= , and 

60oilT C= D .
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