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ABSTRACT
Pressure Acoustic Transfer Functions or Vectors (P-ATVs) relate the surface velocity of a structure to
the sound pressure at a field point in the surrounding fluid. These functions depend on the structure
geometry, properties of the fluid medium (sound speed and characteristic density), the excitation
frequency and the location of the field point, but are independent of the surface velocity values
themselves. Once the P-ATV is computed between a structure and a specified field point, we can
compute the sound pressure at this point for any boundary velocity distribution by simply multiplying
the P-ATV with the forcing function (surface velocity). These P-ATVs are usually computed by the
application of the Reciprocity Principle.
In this work, we present a novel way to compute the Velocity Acoustic Transfer Vector (V-ATV) which
is the relation between the surface velocity of the structure and fluid particle velocity at a field point.
To our knowledge, the idea of the V-ATV and its computation is completely new and has not been
published elsewhere.
By combining the P-ATVs and V-ATVs at a number of field points surrounding the structure, we
obtain the Quadratic Power Transfer function (QPTF) which allows us to compute the sound power
radiated by a structure for any surface velocity distribution. This allows rapid computation of the
sound power for arbitrary surface velocity distributions and is useful in designing quiet structures by
minimizing the radiated sound power.

1. INTRODUCTION

When designing quiet machines, it is often necessary to figure out the structure velocity distribution
that minimizes the radiated sound power and then work backwards to see if this velocity distribution
can be realized in operating conditions. The sound power calculation is inside the optimization loop.

A typical workflow is as follows:
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– For the given surface velocity distribution (vn), compute the system of equations that relate the
surface pressure to surface velocity (BEM system of equations).

– Solve these linear system of equations to determine the surface sound pressure (p) for the
given surface velocity (vn). As BEM system of equations are full, the corresponding influence
matrices are not stored and iterative solvers are typically employed, along with acceleration
techniques such as the Fast Multipole Method (FMM) for faster computation of the matrix-
vector products.

– Integrate the average normal sound intensity In = 1
2<(pṽn) over the surface of the radiator to

compute the radiated sound power.

The time-consuming step in this workflow is the computation of the surface pressure (p) obtained
by solving the boundary integral equations. Unfortunately, this step needs to be repeated once for
every optimization iteration, thus slowing down the whole process. In this paper, we present a novel
and extremely fast approach to compute the radiated sound power. Applying this technique will be
very helpful, when designing structures to emit low noise.

The proposed method is very general and works for all boundary condition types and any BEM
formulation (Helmholtz Integral Equation formulation, Burton Miller formulation etc, Indirect
BEM variational formulation etc.). To convey the main idea without getting bogged down in the
details, we will limit the discussion here to velocity boundary condition and the Helmholtz Integral
Equation (HIE) formulation. Applying these principles, it is straight forward to derive the general
equations for other boundary conditions and BEM formulations.

2. PRESSURE ACOUSTIC TRANSFER VECTOR (P-ATV)

2.1. Direct Problem
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Figure 1: Direct Problem: Prescribed velocity boundary condition vn on the structure. Sound pressure
at the field point xs is of interest.

Figure 1 shows the problem at hand. A structure with a bounding surface S is is submerged in a
fluid and vibrating with a normal velocity of vn(q), where q is a boundary point. We are interested in
computing p(xs), the sound pressure at the field point xs.

The Helmholtz equation governs the sound pressure p(x) variation in the fluid domain.

∇2 p + k2 p = 0 (1)

The boundary condition on surface S is

vn = vn (2)



where vn is the normal component of velocity.
Instead of solving this problem directly as posed, we first compute the P-ATV between the structure

and the field point xs. Once the P-ATV is computed, obtaining the sound pressure at xs for any vn

involves just a multiplication instead of solving the BEM system of equations. Of course, there is
no free lunch. What are we losing? Solving the direct problem will enable us to compute the sound
pressure at any point in the fluid, while multiplying the P-ATV with the boundary excitation will give
us the sound pressure only at one particular field point xs.

2.2. Reciprocity Principle
Reciprocity principle [1] holds true for any linear system and has wide application in mechanics,

electromagnetics and acoustics. In simple terms, it states that if the positions of the source and the
observer are interchanged, the measured response does not change.

Taking an example from mechanics, in the direct problem a force FA is applied to a structure at
location A and the deflection XB is measured at point B. In the reciprocal problem, the force and
response locations are interchanged, that is force FB is applied at location B and response XA is
measured at location A. As per reciprocity principle:

XB

FA
=

XA

FB
(3)

If an equal force is used at both locations, then XB = XA, that is if the positions of source and
observer are interchanged, the response value is identical. This is clearly illustrated in Figure 2 using
a cantilever beam example.
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Figure 2: Illustration of the reciprocity principle using the example of a cantilever beam.

Generalizations of this principle to account for distributed loads on surfaces can be derived. In
fact, the calculation of expressions for the pressure and velocity acoustic transfer functions is an
application of this principle.

2.3. Computing P-ATV using Reciprocity
The Reciprocity principle is applied to compute the P-ATVs and its computation is well known as

detailed in several publications [2, 3] and US Patent 6,985,836 B2 [4].
Let S be the surface of the structure. In the reciprocal problem, a monopole source with a volume

velocity $ is placed at the point of interest (xs) and a acoustically rigid boundary condition (vn = 0)
is applied on the surface of the structure, as shown in Figure 3.
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Figure 3: Reciprocal problem: Monopole source place at the location xs. Acoustically hard boundary
condition on the surface S .

The governing equation for the reciprocal problem is

∇2ψp + k2ψp = ikZ0 $δ(x − xs) (4)

The boundary condition on surface S is

vn =
1

ikZ0

∂ψp

∂n
= 0

∂ψp

∂n
= 0 (5)

where ψp is the pressure, k is the wave number, Z0 = ρ0c is the characteristic impedance of the fluid
medium, $ the monopole volume velocity and xs the source location. We compute ψp on the surface
S using BEM. P-ATV is related to the induced surface pressure ψp.

2.4. Green’s Second Identity
Applying Green’s second identity and using Sommerfeld’s radiation condition on surface S∞, we

can write a relation between the two solutions p and ψp as∫
V

[
ψp(∇2 p + k2 p) − p(∇2ψp + k2ψp)

]
dV =

∫
S

[
ψp
∂p
∂n
− p

∂ψp

∂n

]
dS (6)

From boundary condition Equation 5, ∂ψp/∂n = 0 on S ,∫
V

[
ψp(∇2 p + k2 p) − p(∇2ψp + k2ψp)

]
dV =

∫
S

ψp
∂p
∂n

dS (7)

∇2 p + k2 p = 0 from Equation 1. Thus Equation 7 simplifies to∫
V

[
−p(∇2ψp + k2ψp)

]
dV =

∫
S

ψp
∂p
∂n

dS (8)

Using Equation 4, Equation 8 can be simplified as∫
V

−p ikZ0 $δ(x − xs) dV =

∫
S

ψp
∂p
∂n

dS (9)



Using the sifting property of the Dirac delta function, Equation 9 reduces to

−p(xs) ikZ0 $ =

∫
S

ψp(q)
∂p
∂n

(q) dS (q) (10)

Thus,

p(xs) =
−1

ikZ0 $

∫
S

ψp(q)
∂p
∂n

(q) dS (q)

=
−1
$

∫
S

ψp(q)vn(q) dS (q) (11)

Selecting volume velocity of the monopole source in the reciprocal problem as $ = −1 yields

p(xs) =

∫
S

ψp(q)vn(q) dS (q) (12)

Thus ψp(q), the induced pressure on the radiator surface caused by a monopole source at the
field point, is the Pressure Acoustic Transfer Function (P-ATF). Discretized version of the P-ATF
that incorporates the nodal pressures ψp(qi) and the nodal quadrature weights w(qi) is the Pressure
Acoustic Transfer Vector (P-ATV).

p(xs) =

∫
S

ψp(q)vn(q) dS (q)

=
∑

nodes qi

ψp(qi)vn(qi)w(qi)

=
[
ψp1w1 ψp2w2 . . . ψpiwi . . . ψpNwN

]


vn1

vn2
...

vni
...

vnN


p(xs) = [P-ATV(xs)] {vn} =

[
ψ̂p(xs)

]
{vn} (13)

The Pressure Acoustic Transfer Vector (P-ATV), also indicated by
[
ψ̂p(xs)

]
includes the nodal

values of the induced pressure plus the integration weights. Inner product of
[
ψ̂p(xs)

]
with the vector

of nodal normal velocities {vn} yields the pressure at the field point xs.

[P-ATV(xs)] =
[
ψ̂p(xs)

]
=

[
ψp(q1)w(q1) ψp(q2)w(q2) . . . ψp(qi)w(qi) . . . ψp(qN)w(qN)

]
(14)

Equation 13 is used for computing p(xs), the sound pressure at the field point xs for an arbitrary
velocity vn specified on the structure surface.

3. VELOCITY ACOUSTIC TRANSFER VECTOR (V-ATV)

To compute the Velocity Acoustic Transfer Function (V-ATF), we follow a procedure very similar
to the one used P-ATF computation with one difference; Instead of using a point monopole source as



was done for P-ATF, we will use a dipole source at the field point for the reciprocal problem. This
allows us to extract the component of velocity in the direction of the dipole. If the full velocity vector
at the field point is desired, we need to solve three separate reciprocal problems each with a different
dipole orientation (x, y, or z), to extract all the Cartesian components of the velocity.

For simplicity we orient the dipole in the x-direction and obtain equations for computing the
x-component of velocity vx(xs).
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(a) Direct problem with prescribed velocity
boundary condition. vx at field point xs is desired.
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(b) Reciprocal problem with a dipole source xs

and rigid boundary condition on S .

Figure 4: Direct and reciprocal problems for computing the Velocity-ATF.

3.1. Direct Problem
Direct problem with the prescribed velocity boundary condition vn = vn is shown in Figure 4(a).

The Helmholtz equation governs the pressure field in the fluid surrounding the structure. It is desired
to calculate the x-component of velocity at the field point xs.

∇2 p + k2 p = 0 (15)

The boundary condition on surface S is given as

vn = vn (16)

3.2. Reciprocal Problem
Let S be the surface of the structure. Consider an acoustic dipole of source strength (D = $∆)

located at the specified field point (xs) and oriented along the x-direction, as shown in the Figure 4(b).
The governing equation has a forcing term due to the dipole source located at xs.

∇2ψv + k2ψv = ikZ0 D δ′(x − xs)δ(y − ys)δ(z − zs) (17)

The boundary S is considered acoustically rigid.

∂ψv

∂n
= 0 (18)

We compute ψv on the surface S using BEM.



3.3. Green’s Second Identity
We derive an expression for the Velocity Acoustic Transfer Function (V-ATF) by combining the

solutions to the direct and reciprocal problems using the Green’s second identity.∫
V

[
ψv(∇2 p + k2 p) − p(∇2ψv + k2ψv)

]
dV =

∫
S

[
ψv
∂p
∂n
− p

∂ψv

∂n

]
dS (19)

From the governing Equation 15 and the rigid boundary condition from Equation 18, Equation 19
simplifies to ∫

V

−p
[
ikZ0 D δ′(x − xs)δ(y − ys)δ(z − zs)

]
dV =

∫
S

ψv
∂p
∂n

dS (20)

where

δ′(xs, ys, zs) = lim
∆→0

δ(xs + ∆
2 , ys, zs) − δ(xs −

∆
2 , ys, zs)

∆
(21)

Using the sifting property of the delta function, Equation 20 is reduced to

−ikZ0D lim
∆→0

 p(xs + ∆
2 , ys, zs) − p(xs −

∆
2 , ys, zs)

∆

 =

∫
S

ψv
∂p
∂n

dS (22)

−ikZ0 D
∂p
∂x

=

∫
S

ψv
∂p
∂n

dS (23)

−ikZ0 D (ikZ0
∂v
∂x

) =

∫
S

ψv (ikZ0 vn) dS (24)

The component of velocity in the x-direction at the field point is given as

vx(xs, ys, zs) = −
1

D (ikZ0)

∫
S

ψv(q)vn(q) dS (q) (25)

Choosing the dipole source strength D to be −1/ikZ0 yields the velocity acoustic transfer function
(V-ATF) between the structure and the field point xs.

vx(xs, ys, zs) =

∫
S

ψv(q)vn(q) dS (q) (26)

Physically, to a scalar multiple, the V-ATF is nothing but the induced pressure on the structure
surface S due to a dipole source with the proper orientation at the field point. Discretized version
of the V-ATF that incorporates the nodal values of the induced surface pressures ψv(qi) and the nodal
quadrature weights w(qi) is the Velocity Acoustic Transfer Vector (V-ATV).



vx(xs, ys, zs) =

∫
S

ψv(q)vn(q) dS (q)

=
∑

nodes qi

ψv(qi)vn(qi)w(qi)

=
[
ψv1w1 ψv2w2 . . . ψviwi . . . ψvNwN

]


vn1

vn2
...

vni
...

vnN


vx(xs, ys, zs) = [V-ATV(xs)] {vn} =

[
ψ̂v(xs)

]
{vn} (27)

The Velocity Acoustic Transfer Vector (V-ATV), also indicated by
[
ψ̂v(xs)

]
includes the nodal

values of the induced pressure plus the integration weights. Inner product of
[
ψ̂v(xs)

]
with the vector

of nodal normal velocities {vn} yields the velocity at the field point xs.

4. QUADRATIC POWER TRANSFER FUNCTION

The sound power radiated by a structure is computed by integrating the time averaged normal
sound intensity In over a measurement surface enclosing the radiator. Typically a spherical
measurement surface is chosen for simplicity. The average sound intensity at a point x f in the radial
direction is given as

Ir(x f ) =
1
2
<[p(x f )ṽr(x f )] (28)

where, p(x f ) and vr(x f ) are the sound pressure and the radial component of velocity evaluated at the
field point x f , and ∼ represents complex conjugate operation.

If the pressure ATV
[
ψ̂p(x f )

]
and the radial velocity ATV

[
ψ̂v(x f )

]
between the structure and the

field point x f are precomputed and available, then the expression for average radial intensity at x f can
be written as

Ir(x f ) =
1
2
<

[
(
[
ψ̂p(x f )

]
{vn}) · conj (

[
ψ̂v(x f )

]
{vn})

]
=

1
2
<

[
(
[
ψ̂p(x f )

]
{vn}) · (

[ ˜̂ψv(x f )
]
{ṽn})

]
=

1
2
<

[
[vn]

[{
ψ̂p(x f )

}
⊗

[ ˜̂ψv(x f )
]]
{ṽn}

]
(29)

Ir j =
1
2
<

[
[vn]

[{
ψ̂p j

}
⊗

[ ˜̂ψv j

]]
{ṽn}

]
(30)

Equation 30 gives the time averaged radial intensity at a field point j as a quadratic function of surface
normal velocity vector {vn}. The highlighted term is the outer product between pressure ATV and the
conjugate of the radial velocity ATV at the field point j, and is a matrix of rank one.

The radiated sound power Πav is the weighted sum of time averaged radial intensity at the field
points and is given as:

Πav =
∑

j

Ir jw j =
1
2
< [vn]

∑
j

[
w j

{
ψ̂p j

}
⊗

[ ˜̂ψv j

]]
{ṽn} =

1
2
< [vn] [Ω] {ṽn} (31)



where the Resistance Matrix [Ω] is given as

[Ω] =
∑

j

w j

{
ψ̂p j

}
⊗

[ ˜̂ψv j

]
(32)

and sound power Πav is

Πav =
1
2
< [vn] [Ω] {ṽn} (33)

Thus, combining the pressure ATV and the radial velocity ATV’s at a number of field points on a
measurement mesh, we obtain the quadratic sound power transfer function shown in Equation 33.
This is a wonderful result – knowing only the surface velocity of the structure we can now quickly
compute the radiated sound power without any intermediate calculations.

The concept of a resistance matrix for sound power was explored in Koopman et. al [5]. However,
it was limited to planar radiators, and small sources (low frequency approximation). The derivation
here is completely general.

An interesting observation from Equation 32 is that the resistance matrix [Ω] is expressed as a
sum of several rank one matrices, much like an onion with its layered shells. We will explore
in future work, what the physical significance of this decomposition is; here we just point out this
interesting fact. Resistance matrix [Ω] being a sum of many rank one matrices opens the possibility
of storing just the P-ATV and V-ATVs for each frequency of interest (Memory=2NM, where N is the
number of nodes and M is the number of field points) instead of storing the entire resistance matrix
(Memory=N2) for each frequency - very efficient as the number of nodes N far exceeds the number
of field points M.

5. EXAMPLE

An example of an automotive transfer case is considered. At a frequency of 1000 Hz, the
pressure and velocity ATVs between the transfer case and a field point below it, at location
xs(0.21,−0.46,−0.14) are computed by solving the corresponding reciprocal problems using Coustyx
from ANSOL [6, 7].



5.1. Pressure ATV

Figure 5: (a) Problem set up for computing P-ATV. Reciprocal problem with a monopole source at
xs. (b) P-ATV between xs and the transfer case at 1000 Hz.

From Figure 5, it is clear the portions of the surface that are closer to the chosen field point xs will
have a larger contribution to the pressure at xs.

5.2. Velocity ATV

(a) (b)

Figure 6: (a) Problem set up for computing V-ATV. Reciprocal problem with a dipole source at xs.
(b) V-ATV between xs and the transfer case at 1000 Hz.

From Figure 6, it is seen that the character of the V-ATV is quite different than the P-ATV. That
is, the surface portions contributing to acoustic particle velocity at xs are very different than the one



contributing to the pressure.

6. CONCLUSION

This paper builds upon the idea of the pressure ATVs {ψ̂p} and develops completely new
formulations for constructing the velocity ATVs {ψ̂v} and the sound power resistance matrix [Ω].
These transfer vectors and matrices are very useful for fast computation of pressure and velocity at a
field point, and radiated sound power.
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