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Nomenclature 
Nb  Number of blade groups  
Rb Ratio between Nb and the number of being 

generated gear teeth 
rb  Blade Radius 
εb  Eccentric Angle 
Γb  Hook Angle 
hf  Blade Height 
κe  Rake Angle 
αe Blade Angle 
re   Edge Radius 
LT  Length of Toprem® 

τ   Angle of Toprem® 
ρt   Blade radius of curvature 
i   Tilt Angle 
j   Swivel Angle 
Sr  Radial Setting 
q   Cradle Angle 
Em  Blank Offset 
γm  Machine Root Angle 
ΔXp  Machine Center to Back 
ΔXb  Sliding Base 
Ra  Ratio of Roll 
 
1. Introduction 
In the geared transmission design it is very useful 
to have a numerical tool able to simulate the real 
behavior of the gear drive, searching for proper 
contact pattern, low level of transmission error 
and acceptable fillet stress. In this paper a set of 
numerical procedure for performance analysis of 
face hobbed hypoid gear will be proposed.  

As well known, this kind of gear is largely 
applied when it is needed to transfer power and 
motion between intersecting and crossing axles 
[1]. Hypoid pairs are mainly manufactured by face 
hobbing (FH) or face milling (FM) cutting process 
[2]; while this latter uses a single indexing cutting 
method, in FH process the being generated gear 
has continuous rotation and rotates in a timed 
relationship with the cutter. As the gear is being 
cut, successive cutter blades groups engage 
successive tooth slots guaranteeing a continuous 
indexing. This process is now spreading in 
automotive industry because of its fast 
manufacturing time. 

 Since many decades, a lot of studies about 
tooth surface representation, contact and stress 
analysis of FM gears have been carried out [3-6]. 
On the contrary, about FH process, which is 
considerably more complex, only a small number 
of papers have been published. Regarding tooth 
geometry, Litvin et al. derived a mathematical 
model able to describe tooth surfaces only of a 
non-generated Oerlikon gear member [7]; Fong 
proposed a computerized universal generator able 
to simulate virtually all primary spiral bevel and 
hypoid cutting methods without providing a 
detailed description of the FH case [8]. Referring 
to performance analysis, the state of art is even 
worse: in the open literature any work has been 
found. Consequently, nowadays, it is possible to 
study this kind of gears only by using, basically as 
a “black box”, proprietary software which has 
been developed by manufacturing machine and 
tools suppliers. 
 Goal of this paper is just to propose an 
integrated tool for computerized design of FH 
hypoid gears. 
 The first step in order to build a reliable 
numerical model is to get a fine geometrical 
representation of gear tooth surfaces. With this 
aim, a series of algorithms able to compute tooth 
surfaces of FH gears starting from cutting process 
will be described [9]. The geometry of real FH 
head cutter (Gleason Tri-Ac®) will be firstly 
analyzed; many kinds of blade configuration 
(straight and curve blades, with or without 
Toprem®) will be considered. Then, according to 
the theory of gearing, FH cutting process (with 
and without generation motion) will be simulated 
and gear tooth surfaces equations will be 
computed. The proposed mathematical model is 
able to provide an accurate description of the 
whole tooth, including fillet region; it will also take 
into account undercutting occurrence, which is 
very common in FH gears due to uniform depth 
tooth [4]. By means of this model, tooth surfaces 
of a real gear drive, which is mounted in a truck 
differential system, will be computed and the 
results will be validated by comparing them with 
the ones calculated by a reference proprietary 
software and with the real surfaces. 
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 Then, the obtained tooth surfaces will be used 
as fundamental input for a powerful contact solver 
which is based on a unique semianalytical finite 
element formulation [10-11]. Firstly, the gear drive 
it will study under light load by monitoring, for 
drive and coast side, the contact pattern and 
transmission error (Tooth Contact Analysis - 
TCA). After that, with the aim to find out gear drive 
performance in the real service conditions, a set 
of torque values will be applied and the influence 
of the load on contact pattern, on transmission 
error and on load sharing will be accurately 
analyzed (Loaded Tooth Contact Analysis - 
LTCA). Contact pressure and stress distribution 
will be also evaluated. The obtained results will be 
compared with the ones calculated by a reference 
software. 

 
2. Theoretical Background of Face 
Hobbing Method 
As known [2], FH head cutter is provided with a 
proper number of blade groups Nb, each of them 
consists in an outer and an inner blade. As 
reported in Figure 1, in order to accomplish 
continuous indexing, the head cutter and the 
being generated gear are rotating in opposite 
directions and the next group of blades will start to 
cut the next gear tooth after that the current group 
of blades has finished cutting the current tooth. 
 

Figure 1. Sketch of FH cutting process 
 
 In this way, the angular velocity of the head 
cutter ωb is related to the angular velocity of the 
work-piece ωw according to the ratio between the 
number of blade groups Nb and the number of 
being generated gear teeth Nw: 
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  It is evident that the edge of the blade, during 
cutting, tracks an epicycloid curve. In order to 
accommodate this path, unlike FM method, the 
effective cutting direction of the blade is not 
perpendicular to the cutter radius and the blade is 
moved in the head cutter tangentially to an offset 
position. 
 Fig. is referred to the non-generated process 
(Formate®); if a generated tooth is needed, the 
generation motion, which relates cradle and work-
piece rotation, has to be superimposed. 
 Traditionally, FH gear drive has uniform depth 
tooth; it follows that FH tooth often shows 
undercut toe-section with sharp topland. This 
latter inconvenient can be eliminated by 
introducing a secondary face angle; undercutting 
avoidance could be a difficult task and often FH 
gear drives work affected by it [2, 12]. 
 
3. Simulation of Face Hobbing Cutting 
Process: Tooth Surface Generation 
According to the theory of gearing [3-4, 13], in 
order to get the analytical representation of gear 
tooth surfaces, firstly cutting process (i.e. head 
cutter, cutting blades and cutting machine) has to 
be described. It will be clear that [9], due to the 
complexity of FH cutting process, FH cutting 
blades require a more complicated representation 
than the ones usually illustrated in the literature 
(typically for FM method). In this paper a real FH 
process, Gleason Tri-Ac®, will be studied. 
 
3.1. Cutting Tools: Head Cutter and 
Cutting Blades 
As shown (Figure 1), FH head cutter carries a 
given number Nb of blade groups; each group 
contains an outer blade (OB) for cutting concave 
gear side and an inner one (IB) for convex side. 
Figure 2 reports, from two different viewing points, 
one blade group in a Gleason Tri-ac® head cutter. 
 Referring, for example, to the outer blade, in 
order to correctly locate the blade in the head 
cutter, the pitch point P of cutting edge (see also 
Figure 3) has to be defined. The distance from 
this point to the head cutter center is the equal to 
rb; the angle εb is introduced in order to take into 
account that FH process, unlike FM, shows 
blades that are not aligned to the cutter radius. It 
is also evident that the blade is not perpendicular 
to the head cutter plane, but it is mounted at an 
angle Γb with respect to the head cutter rotation 
axis. The distance from the pitch point P to the tip 
of the blade is measured by hf. 
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Figure 2. Sketch of a blade group mounted in the FH head cutter. 

 

 
Figure 3. Details of the FH blades. 

 
 Figure 3 shows the details of outer and inner 
blades. It is evident that the cutting edge lies 
entirely on a plane, called Rake plane, which 
forms an angle κe with tool plane. It is also 
introduced the angle αe as the angle between the 
vertical axis of the blade and the projection of the 
cutting edge on the tool plane. 
 Once the blade geometry has been introduced, 
it is possible to compute the analytical formulation 
of the cutting edge. Many blade profiles are 
available in commerce. In this paper, a complex 
blade shape - curved with Toprem® - will be 
analyzed; simpler configurations as straight blade 
with and without Toprem® or curved blade without 
Toprem® can be easily derived starting from the 
following discussion. The particular disposition of 
the cutting edge on the Rake plane requires to set 

up the reference frame St (Figure 2 and 3) and to 
search firstly for the analytical description of 
projection on XtZt plane of the cutting edge. Figure 
4 shows the projection on this plane of a curved 
blade with Toprem®; the following sections, which 
are function of the curvilinear coordinate s, have 
been defined: 
I) Bottom: straight horizontal segment; 
II) Fillet: circular arc of radius re and center at 
point R (xR, zR); 
III) Toprem®: inclined straight segment 
characterized by the length LT and the angle τ; 
IV) Curved blade: circular arc with radius of 
curvature ρt and center at point O (xO, zO). At pitch 
point P the segment tangent to the blade is 
inclined by an angle equal to αt. 
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Figure 4. Projection on XtZt plane of curved blades with Toprem®. 
 
 The analytical representation of the blade profile 
has been computed as follows: 
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for L1 < s ≤ L1+ L2  
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(2.d) 
 

 The value of the parameters re, LT, τ and ρt 
depends upon the chosen cutter blades. In order 
to calculate (xR, zR), (xO, zO), δ, L1 and L2 it is 
necessary to develop some simply geometrical 
considerations based on Figure 4; the value of the 
angle αt is derived from αe.  
 Blade profile yt component is computed by 
imposing that an arbitrary point of the blade 

)](),(),([)( szsysxs ttt=tr  and the blade tip Ot [0,0,0] 
lie on the Rake plane. 
 Starting from vector )(str , by means of some 
coordinates transformations, it is useful to 
measure the blade profile also in the head cutter 
reference frame Sh (Fig. 2), obtaining vector )(shr . 

This latter representation will be the starting point 
for computation of tooth surfaces equations. 
 
3.2. Cutting Process and Tooth Surface 
Generation 
In order to numerically compute gear tooth 
surfaces, the classic theory of gearing requires to 
compute a proper set of coordinate 
transformations able to simulate cutting process 
and to represent the cutting edge in reference 
frame of being generated gear [13]. 
 Consider Fig. 5, where a FH cutting machine set 
up to cut a generated pinion is shown. In order to 
describe the machine settings, a set of reference 
frames have to be introduced. Firstly, the system 
Sm, which is fixed and rigidly connected to the 
cutting machine, is defined; it has the origin Om in 
the center of cradle and Zm axis coinciding with 
the cradle rotation axis. Then, reference frame Sh, 
which has been introduced in the previous section 
for blade profile computation, is considered; it 
allows to measures the head cutter rotation θ and 
to take into account the tilt and swivel angles. The 
origin Oh is located by means of the distance Sr 
and the angle q. Finally, system Sw, which is 
rigidly connected to the work-piece, is introduced; 
its origin Ow is placed using the following blank 
settings: Em, γm, ΔXp and ΔXb. Zw axis is coinciding 
with the gear rotation axis. In order to accomplish 
the peculiarity of FH process (i.e. continuous 
indexing), the system Sw has to rotate about Zw 
axis by an angle equal to Rbθ (see Eq. (1)). If, as 
in this case, a generated tooth is needed, it is 
necessary to add to the work-piece rotation a term 
equal to Raφ where Ra is the ratio of roll and φ is 
the cradle rotation angle (i.e. of the system Sc). 
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Figure 5. Sketch of a cutting machine set up for manufacturing a generated FH gear drive. 

 
 By properly computing the matrices for 
coordinates transformations (see Appendix A), the 
cutting edge representation in the system Sw is 
derived: 
 

)(),,( ss h1h2132c3mc4m54w5w rMMMMMMMMr =φθ  (3)
 
 As well known, Equation (3) represents a family 
of surfaces; with the aim to compute tooth 
surfaces, one has to search for the envelope of 
this family by solving equation of meshing: 
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 By using values of θ, φ and s that satisfy Eq. (3), 
Eq. (4) and the tooth geometric boundaries, a 
surface for each section of the blade is 
generated*. For example, considering previously 

                                                 
* When representation of a non-generated gear is 
needed, cradle rotation φ is null and tooth surfaces are 

discussed blade, four surfaces, corresponding to 
the four blade parts (bottom, fillet, Toprem® and 
curved blade), are obtained. 
 In order to compute final tooth surfaces, it is 
necessary to handle properly these four surfaces. 
Due to the severe analytical complexity of these 
equations, a convenient way to accomplish this 
step is to slice the tooth by means of several 
cross sections and to compute numerically the 
tooth profiles belonging to these cross sections; in 
other words, by solving a non-linear problem, four 
profiles cut by the four parts of the blades and 
belonging to the selected cross section are firstly 
calculated. Then, these four profiles have to be 
correctly merged. If non-generated cutting 
process is simulated, the four parts of profile are 
very regular and its composition is a trivial task 
(Figure 6, on the left). If a generated pinion is 
considered, the enveloping process induces a 
more intricate profile (Figure 6, on the right): 
discontinuities and intersections between the four 
                                                                            
computed only by means of Eq. (3) that becomes a 
function of two parameters (θ and s). 
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sections of profile are usually detected. In 
particular fillet can intersects active flank and 
undercutting takes place. The proposed model is 
able, by means of numerical procedures based on 
simple vector properties [14], to detect all these 

intersections, to eliminate all that points not 
belonging to the real profile and, using the 
remaining points, to compute the final tooth 
profile.  
  

 

 
 

Non-generated Gear Generated Pinion 

Figure 6. Example of tooth sections computed by the proposed model. 
 

4. Computerized Analysis of Face Hobbed 
Hypoid Gear Drives 
In this section, by means of the proposed model 
tooth surface representation of a real case will be 
derived and the results accurately validated; then, 
by simulating the meshing, performance analysis, 
including contact analysis under light and heavy 
loads and stress analysis, will be carried out. 
 A FH hypoid gear drive belonging to a truck 
differential system is considered. Table 1 reports 
the main geometric data of this example; the pair 
carries a 44 teeth gear and a 15 teeth pinion. 

 
Table 1. Geometric data of the example case. 

   Pinion Gear 

Module [1/mm] m 5.11 

Shaft Angle [°] Σ 90 

Number of Teeth  N 15 44 

Mean Spiral Angle [°] ψ 43.00 28.90 

Hand of Spiral   LH RH 

Face Width [mm] F 41.43 38.00 

Outer Cone Distance [mm] Ao 106.40 126.10

Pitch Angle [°] γ 26.88 62.41 

Addendum [mm] a 5.09 2.96 

Dedendum [mm] b 3.91 6.04 

  
 The gear member is Formate® while the pinion 
is obtained using generation motion; for the 
pinion, tilt and swivel mechanisms are employed. 
Regarding cutting tools, Gleason Tri-ac® head 

cutter with 13 blade groups is used; the gear is cut 
by curved blades, the pinion by curved blades 
with Toprem®. For both the members, nominal 
blade radius of curvature is equal to 762 mm. 
 
4.1. Tooth Surface Representation 
By means of the algorithms proposed in 
Paragraph 3, tooth surface representation of 
studied gear drive has been computed. In Figure 
7.a, the results obtained for the gear member are 
shown; as expected, the non-generated member 
presents tooth profiles which are very regular and 
similar to the cutting edge shape. Figure 7.b 
reports the surfaces obtained for the pinion; in this 
case, the enveloping process induces more 
complicated tooth geometry which requires a 
wider discussion. Consider Figure 8, where the 
results obtained for two characteristic cross 
sections of the studied pinion are reported. As 
often it happens in uniform depth tooth, toe-
section (Fig. 8.a, above) shows undercutting (on 
concave side) and very sharp topland. The 
different pressure angle value between inner 
blade and outer blade induces a concave profile 
different from the convex one. Moreover, neither 
of the sections has tooth height equal to the 
nominal one (NTH); in particular the heel section 
concave side height is about 5.5% higher than the 
nominal one (Fig. 8.b, above). Pictures of the real 
tooth (Fig. 8.a and 8.b, below) make clear that the 
proposed mathematical model is able to capture 
accurately the tooth shape.  
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(a) (b) 

Figure 7. Tooth surface representation obtained by means of the proposed model. 
 

 
 

(a) TOE (b) HEEL 

  
 

Figure 8. Pinion cross-sections obtained by means of the proposed model compared with the real tooth. 
 

 In order to validate quantitatively these results, 
the obtained surfaces are compared with the ones 
calculated by software Gleason T801Z0® which is 
considered a reliable reference. By means of the 
two theoretical models, coordinates of the 
concave and convex active flanks for both of gear 
and pinion are computed; discrepancies between 
the two surfaces are evaluated as normal 
deviation of homologue points over a grid 
containing 15 points along lead and 9 points along 
tooth profile. For both the pinion and the gear, the 
normal deviation between the two models has 

been revealed very small (mean value below 0.1 
μm) and uniformly distributed over the flank; thus, 
the mathematical model proposed in this paper 
allows to describe accurately FH tooth geometry. 
 
4.2. Simulation of Meshing: Contact and 
Stress Analysis 
The gear tooth surfaces representation which has 
been previously computed and validated, it has 
been employed as input for an advanced contact 
solver which combines the Boussinesq theory (for 
solving the contact problem) and traditional finite 
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element method (for computation of gross 
deflections associated with tooth bending) [10-11]. 
This approach allows to build an accurate 
numerical model with a relative coarse mesh and 
to carry out very efficiently contact analysis and 
stress calculation. 
 Figure 9 shows the settings of the model 
prepared for these analyses. Gear meshing is 
studied in the fixed reference frame Sg that is 
rigidly connected to the housing; the system Sf,1 
and Sf,2 are defined in order to take into account 
the relative position of pinion and of gear with 
respect of the system Sg; in this way, it is also 
simple to introduce the installment errors (ΔE, ΔP, 
ΔG and ΔΓ). 
 According to Figure 9 (on the right), pinion 
rotation is considered by means of system Sw,1 
which is rigidly connected to the pinion; as 
mentioned, this frame has been also used to 
compute tooth surface equations. Gear rotation is 
similarly handled. 

 Boundaries conditions are placed according to a 
simplified approach, already seen in the literature 
[4]: the internal pinion rim is constrained to 5 
degrees of freedom and the torque is imposed; 
the internal gear rim is fully constrained.  
 When drive side is analyzed, contacting 
surfaces are pinion concave/gear convex, the 
contrary for coast side condition. The contact is 
simulated as frictionless. 
 The material is defined as steel with the 
properties of Young’s modulus E = 210000 N/mm2 
and the Poisson’s ratio ν = 0.3. 
 The analyses carried out in this paper are static: 
in a given instant of cycle of meshing, pinion and 
gear are rotated to an angle where they are in 
contact in a single point and the contact is solved. 
It follows that, in order to study the whole cycle of 
meshing, many instants have been analyzed. 
  

 

 

 

Figure 9. Settings of the numerical model used for performance analysis. 
 
4.2.1. Tooth Contact Analysis 
As known [15], TCA theory is based on the 
assumption that the applied torque is null and the 
gear teeth are rigid; this approach is implemented 
in most of the proprietary software (as example 
the TCA module of Gleason T2000®). In this 
paper, due to the fact that the contact solver 
employees finite element method, a torque, 
though very light (0.0001 Nm), has to be applied; 
moreover the teeth show the stiffness which is 
deriving from the characteristics of geometry and 
material. Table 2 reports the conditions analyzed 
in this paper. 

Table 2 – TCA conditions simulated in this paper. 

ID 
Case Side Contact 

Position 
ΔE 

[mm] 
ΔP 

[mm] 
Torque 
[Nm] 

TCA.1 Drive Toe 0.254 -0.102 ∼ 0 

TCA.2 Drive Mean 0 0 ∼ 0 

TCA.3 Drive Heel -0.508 0.280 ∼ 0 

TCA.4 Coast Toe -0.254 0.051 ∼ 0 

TCA.5 Coast Mean 0 0 ∼ 0 

TCA.6 Coast Heel 0.508 -0.254 ∼ 0 
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 For drive and coast side, toe, mean and heel 
contact position have been considered. 
Installment errors for toe and heel position are 
computed considering a distance from the mean 
point of 0.25F respectively towards the toe and 
towards the heel. 
 In Table 3, the results obtained by running 
analysis by means of the proposed model (named 
HYFH) are illustrated; for each analyzed case, 
contact pattern and transmission error (TE) are 
reported. This latter parameter has been defined 
as the difference in the angular displacement of 
the gear member from the theoretically exact 
position based on the ratio of the numbers of 
teeth, at different pinion angular rotation: 

1
2

1
22TE ϕ−ϕ=ϕΔ=

N
N  (5)

 
 Path of contact (i.e. white points superimposed 
to contact pattern) is oblique and remains 
correctly in the tooth boundaries. Transmission 
error shows the typical negative parabolic shape 
according to the examples in the literature [16]. 
 Table 3 summarizes also Peak to Peak 
transmission error (PPTE), which gives an idea of 
the gear noise level; these results are compared 
with the ones calculated by TCA module of 
Gleason T2000®; as evident, the agreement is 
quite satisfactory. 
 

Table 3 – Results computed by HYFH in TCA condition compared with the ones calculated by T2000®. 

ID Case Gear Contact Pattern (HYFH) Transmission Error (HYFH) PPTE (HYFH) 
[μrad] 

PPTE (T2000) 
[μrad] 

ΔPPTE
[%] 

 Toe Heel    
TCA.1 49 52 -5.8 

TCA.2 51 54 -4.9 

TCA.3 

 

62 63 -1.9 

 Heel Toe  
TCA.4 45 47 -4.7 

TCA.5 53 57 -6.7 

TCA.6 

 

70 76 -7.9 

 
4.2.2. Loaded Tooth Contact Analysis 
Aim of LTCA is to study contact pattern and 
motion error in loaded state, allowing a better 
understanding of the real gear drive 
performance [17]. By means of the proposed 
model (named HYFH), the truck transmission 
has been analyzed to 7 values of torque which 
are applied in normal service condition (Table 4); 
drive side at mean contact point is considered. 
 In Table 5 the results regarding contact 
analysis are summarized. 
 

Table 4 - LTCA developed in this paper. 

ID Case Side Contact 
Position 

ΔE 
[mm] 

ΔP 
[mm] 

Torque 
[Nm] 

LTCA.1 Drive Mean 0 0 940 

LTCA.2 Drive Mean 0 0 670 

LTCA.3 Drive Mean 0 0 500 

LTCA.4 Drive Mean 0 0 335 

LTCA.5 Drive Mean 0 0 250 

LTCA.6 Drive Mean 0 0 170 

LTCA.7 Drive Mean 0 0 100 
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Table 5 – Contact pattern and contact pressure computed by HYFH in LTCA conditions. 

LTCA.1  

LTCA.2 

LTCA.3 

LTCA.4 

LTCA.5 

LTCA.6 

LTCA.7 

 

 
 For each applied torque value, path of contact 
(i.e. white points corresponding to the point in 
the tooth where, in a given instant of meshing, 
maximum value of contact pressure is reached) 
superimposed to the contact pattern (i.e. 
envelope of contact pressure) is shown. The 
diagram on the right reports, for each values of 
applied torque, maximum contact pressure value 
at successive positions of roll corresponding to 
previously mentioned white points. Observing 
these results, it is possible to note that, as load 
increases, the contact pattern enlarges until, for 
torque above to 250 Nm, edge contact with 
pressure peaks happens. Actually, most of these 
peaks are flattened due to material plasticity or 
to corner smoothing induced by wear. 
 Considering motion transmission, in Figure 10 
(on the left), Harris map (i.e. plotting, for each 
applied torque, of transmission error versus two 
pinion angular pitches) superimposed to TCA 
results (continuous lines) are reported. On the 
right of Figure 10, PPTE and load sharing (i.e. 
Actual Total Contact Ratio εγ,act)  trends versus 
applied torque are summarized as well. These 
diagrams makes evident that as load increases, 
TE curve flattens shifting the phase; this 

evidence is due to the meshing stiffness 
variation as the number of teeth in contact 
changes. At the torque value equal to 335 Nm, 
where the load is shared between 2 and 3, 
almost uniform motion is achieved (PPTE equal 
to 8 μrad); this evidence agrees with 
Welbourne’s work [18] where he points out that 
there is an optimum for PPTE value 
corresponding to minimum noise condition. For 
torque values above 500 Nm, motion curve 
changes again because now the load is shared 
between 3 and 4 teeth; in this case, the 
difference in stiffness for 4 versus 3 teeth is less 
than for 3 versus 2 so the smoothing of the 
motion curve occurs at a slower rate.  
 By comparing all these results with the ones 
calculated by the LTCA module of Gleason 
T2000®, it is possible to conclude that reference 
software computes a stiffer meshing. In fact, Fig. 
11 (on the left) makes clear that Gleason® code 
shares the load on a smaller number of teeth 
and consequently calculates different values of 
PPTE; moreover (Fig. 11, on the right), 
maximum contact pressures are lower and edge 
contact condition is never achieved due to the 
smaller size of contact pattern.
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Figure 10. Harris map and PPTE-Actual Total Contact Ratio εγ trends computed by HYFH. 

 

 
Figure 11. Results (PPTE-Actual Total Contact Ratio εγ and contact pressure) computed by T2000®. 

 It is reasonable to attribute these 
discrepancies to the different analysis approach 
which is adopted by the two codes. As shown, 
the one used by HYFH is based on a 
combination of Boussinesq theory with FE 
method and allows to build a numerical model 
able to describe accurately the complex tooth 
geometry; on the contrary, Gleason® code 
follows an approximate method assuming the 
gear tooth as a cantilever beam for calculation of 
tooth deflection [17]. According to these 
considerations, it seems that the results 
obtained by means of the proposed model can 
be considered more realistic and reliable.  

 
4.2.3 Stress Calculation 
By means of the proposed model it is easy to 
compute stress distribution on the teeth. 

 Referring to the example case, for each values 
of applied torque, bending stress during the 
whole meshing cycle has been monitored. In the 
fillet region, it has been searched for the 
coordinates of the point on the pinion and on the 
gear, where maximum value of Von Mises stress 
has been taken place; when, as in this case, 
drive condition and mean contact point is 
considered, this point is usually located in the 
middle of face width. Here, the trend of Von 
Mises stress versus time has been plotted. 
Figure 12 shows obtained results; it is evident 
that the gear drive is properly design with the 
aim to uniformly balance stress on the gear 
member and on the pinion; moreover these 
graphs allow to study fatigue loading condition of 
gear drive. 
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Figure 12. Bending stress versus time computed by means of proposed model. 

 
5. Conclusions 
In this paper an accurate tool for computerized 
design of face hobbed hypoid gears has been 
presented. 
 In order to accomplish this goal, firstly, a 
mathematical model able to compute detailed 
gear tooth surface representation starting from 
cutting process has been developed. Gleason 
Tri-Ac® head cutter has been considered and 
complex blade configurations (curved blade with 
Toprem®) has been studied; cutting process with 
or without generation motion can be handled. 
The proposed model allows to get a fine tooth 
surface description; it is also able to efficiently 
deal with undercutting occurrence. With the aim 
to validate the model, gear tooth surfaces of a 
real case (truck differential system) have been 
computed and the results compared with the 
ones calculated by a reference software 
obtaining good agreement. 
 Then, these tooth surfaces have been 
provided to a powerful contact solver and 
performance analysis has been developed. The 
truck transmission has been studied, monitoring 
contact pattern and transmission error, in TCA 
condition at several contact positions. After that, 
in order to examine thoroughly gear drive 
performance in the real service conditions, LTCA 
has been developed; the influence of variation of 
the applied torque value on tooth contact 
pattern, on transmission error and on load 
sharing has been accurately analyzed. Contact 
pressure on the active flank and stress 
distribution in the fillet region has been 
monitored as well. 
 The obtained results have been compared 
with the ones calculated by a reference 
software. In TCA condition a good agreement 
has been achieved; in LTCA condition, where 
the stiffness of the teeth plays an important role, 

some discrepancies have been noted. The 
cause of these evidences has to be searched 
mainly in the different approach used in the 
solution of the problem; in particular, the two 
codes compute tooth deflection in a very 
different way. 
 These considerations allow to conclude that 
the model presented in the paper can be 
considered a reliable numerical tool for studying 
face hobbed hypoid gear drive; in order to make 
more realistic the model, studies are foregoing 
for the whole differential system simulation 
which will allow to correctly consider also the 
deflection due to the load. 
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Appendix A 
Matrices describing cutting process 
1) Transformation Sh S1: Head cutter rotation 
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2) Transformation S1 S2: Tilt angle 
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3) Transformation S2 S3: Swivel angle 
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4) Transformation S3 Sc: Head cutter settings 
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5) Transformation Sc Sm: Cradle rotation 
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6) Transformation Sm S4: Work-piece settings 
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7) Transformation S4 S5: Work-piece settings 
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8) Transformation S5 Sw: Work-piece rotation 
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