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Abstract 

In this study, two different dynamic models, a finite 
elements-based deformable-body model and a simplified 
discrete model, are developed to predict dynamic behavior 
of spur gear pairs.  Dynamic transmission error (DTE) and 
dynamic factors (DF) defined based on the gear mesh loads, 
tooth loads and bending stresses are computed for a number 
of unmodified and modified spur gears within a wide range 
of rotational speed for different involute contact ratios and 
torques.  Both models are validated by comparing their DTE 
predictions with experimental data obtained from a set of 
tests using spur gear having unmodified and modified tooth 
profiles.  The predicted DF and DTE values are related to 
each other through simplified formulas.  Impact of nonlinear 
behavior such as tooth separations and jump discontinuities 
on DF is also quantified.   
 
1.   Introduction 

Dynamic behavior of gear systems is important for two 
main reasons.  One reason is the durability of the gear pair.   
Forces acting at the gear meshes and bearings under 
dynamic conditions might be many times larger than 
corresponding quasi-static forces.  As a result of this, 
stresses, and hence, bending and contact fatigue lives of a 
gear set are influenced by its vibratory behavior.  Gear 
design standards incorporate a dynamic rating factor [1] in 
an attempt to account for such dynamic effects.  The second 
reason that makes the dynamic behavior relevant is the 
noise generated by the gear set.  Time-varying dynamic gear 
mesh and bearing forces are transmitted to surrounding 
structures through the housing and the mounts to cause gear 

whine noise.  Therefore, large vibration amplitudes typically 
result in higher noise levels as well.   

Most of the theoretical and experimental studies to date 
were performed with only one of the reasons (noise or 
durability) in mind.  Starting with the dynamic models, a 
large number of them have been developed over the years as 
reviewed by Ozguven and Houser [2], Blankenship and 
Singh [3] and Wang et al [4].  A great majority of these 
studies uses discrete models to predict the parameters that 
might be useful in quantifying how noisy the gear set would 
be.  A few examples from a large number of studies of this 
type are referenced here to represent this approach [5-13].  
A discrete gear mesh interface model consists of a mesh 
stiffness element (mostly a periodically time-varying 
function to represent the fluctuation of the number of tooth 
pairs in contact as gears rotate) and a viscous damper that 
are both applied along the line of action of the spur gear 
pair.  A clearance type constraint to represent backlash 
induced tooth separations and an external displacement 
excitation to represent gear profile errors and intentional 
tooth modifications were included in some of these models.  
Both mesh stiffness function and displacement excitation 
would be determined by using a static-elastic gear analysis 
model.  One commonly used form output from these models 
was the dynamic transmission error (DTE) that is defined as  

 
 )()( 2211 trtrDTE θθ +=  (1) 
 

which represents the motion transfer error along the line of 
action of gears where 1r  and 2r  are the base radii of gears 1 
and 2, and 1θ  and 2θ  are the angular displacements.  This 
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is the dynamic equivalent of the better-known Static 
Transmission Error (STE).  A number of major experimental 
studies on spur gear dynamics including Munro [14], 
Umezawa et al [15] and Kahraman and Blankenship [16-20] 
used DTE as the metric to quantify the dynamic behavior.  
These experimental studies demonstrated clearly that mesh 
stiffness fluctuations and gear backlash must be included in 
an analysis of a spur gear pair as it acts as a parametrically 
excited nonlinear system in dynamic terms.  These 
experimental studies guided many modeling efforts and 
were used for modal validation efforts [6-8,16,17]. 

Several other investigations predicted dynamic forces 
acting at the gear mesh to quantify the dynamic behavior 
[21-27].  Since the gear mesh damping force is very small 
compared to the gear mesh spring force, the dynamic gear 
mesh force (DMF) can be approximated as the product of 
the gear mesh stiffness and DTE.  Dynamic factor was 
defined in these studies as SMFDMFDF max)(=  where 

max)(DMF  is the maximum value of the dynamic mesh 
force and SMF is the static mesh force transmitted by the 
gear pair.  The main shortcoming of these models is that 
they were capable of predicting only DF based on the gear 
mesh forces as defined earlier while the durability of the 
system would require prediction of the state of gear stresses 
under dynamic conditions.  An accurate prediction of 
dynamic stresses requires the dynamic model that includes 
flexible teeth, gear blanks and contacts, all of which are 
possible via a deformable body model.  There are recent 
deformable-body spur gear dynamics models (e.g. reference 
[28]), which were shown to compare well with DTE 
measurements of some of the studies cited earlier [16-20].  
However, these deformable-body models did not focus on 
DF or gear stresses as a part of the dynamic behavior.  
Similarly, experimental studies that focused on the 
measurement of the dynamic bending gear stresses [29] are 
yet to be related to any dynamic model. 

This study attempts to bridge this apparent gap between 
gear durability concerns and gear dynamics models.  For 
this purpose, two different dynamic models, a deformable-
body model and a discrete model, will be developed.  The 
deformable-body model will have the capacity of predicting 
both DTE and DF based on mesh and tooth forces as well as 
dynamic gear tooth bending stresses.  The discrete model 
will rely on the deformable-body model for computation of 
gear mesh parameters under quasi-static conditions and will 
predict both DTE and DF based on mesh and tooth forces.  
The experimental data collected using the test rig described 
in Kahraman and Blankenship [16-20] will be employed to 
validate both models by comparing predicted and measured 
DTE values.  The validation matrix will include several gear 
sets having different involute contact ratios and tooth profile 
modifications operating within a wide range of rotational 
speed at different applied loads.  The validated models will 
then be used for two specific purposes.  First, DTE values 

will be related to DF values based on (i) gear mesh forces, 
(ii) tooth forces, and (iii) bending stresses.  Simplified 
relationships between DTE and different forms of DF will 
be proposed, with the intent that extensive experimental and 
theoretical DTE database available in the literature can be 
related to the durability of the gear sets.  Secondly, impact 
of tooth separations and jump discontinuities due to 
backlash on gear stresses will be quantified.  Such effects 
were studied in the past using DTE for solely noise 
purposes, and their impact on gear durability is yet to be 
understood. 

 
2.  Dynamic Models 

2.1  Deformable-body Model.    The width of the 
contact zone in typical gear applications is two orders of 
magnitude smaller than the dimensions of the gear teeth 
themselves, requiring a very fine mesh inside the contact 
zone.  The location of the contact zone changes as the gears 
enter and exit the mesh.  When conventional FE methods 
are used, besides having an extremely refined mesh, re-
meshing is necessary for every contact position.  

A gear contact analysis model [30], which is the same 
model used in reference [28], will be used here to perform a 
deformable-body dynamic analysis of a spur gear pair.  The 
model divides the gear into a near-field region near the 
contact, and a far-field region away from the contact.  The 
finite element (FE) method is used to compute relative 
deformations and stresses for points in the far-field, and a 
semianalytical deformation model based on the Bousinesq 
and Cerruti solutions is used in the near field within the 
contact zones [31].  This approach does not require a highly  
refined mesh at the contacting tooth surfaces, reducing the 
computational effort compared to conventional FE models 
which require a refined mesh at gear tooth region, limiting 
the model to static analysis only.  Therefore, the model used 
here allows a more refined and comprehensive study of spur 
gear dynamics than the conventional FE models.  The tooth 
surfaces are modeled by a large number of nodes 
representing the involute shape and surface modifications.  
The model illustrated in Figure 1 makes it unnecessary to 
locally refine the FE mesh near the contact, and re-mesh the 
finite elements for each contact position. 

A reference frame is attached to the pinion and gear and 
the finite element computations are done for each of them 
separately. The mesh stiffness and mesh contact forces, 
comprising the dynamic excitation for the system, are 
evaluated internally at each time step [31].  Contact 
conditions are handled as linear inequality constraints 
whose solution is obtained by a revised Simplex solver. 

Contact analysis determines the contact conditions 
between the pinion and gear at each time step.  In the 
absence of rigid body motion, the FE displacement vector 

fix  for gear i satisfy the linear system of differential 
equations [28]: 



  Copyright © 2005 by ASME 3

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1:  Deformable-body dynamic model of an example 
spur gear pair. 

 
 

fififfififfififfi fxKxCxM =++ &&&  (2)  

 
where fif  is the vector of external loads.  Rayleigh’s 
damping model is used here in the form 

ffiffiffi KMC ηµ +=  where µ  and η  are constant 
coefficients.  If rigid body motion is considered, and if we 
represent the rigid body degrees of freedom by irx  we 
replace (2) by 
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The equations for the pinion ( 1=i ) and the gear ( 2=i ) are 
assembled into the matrix equation of motion  

 
 FxKxCxM =++ &&&  (4)  
 

The deformable body model employs a time-discretization 
scheme based on Newmark method [30], as used 
successfully in previous studies [28, 32]. 
 

2.2   Discrete Parameter Model.   The proposed 
discrete model is based on an existing gear dynamics model 
developed by one of the authors [16].   This non-linear, time 
varying model is shown in Figure 2.  It consist of two rigid 
wheels of polar mass moments of inertia of 1I  and 2I , and 
base radii of 1r  and 2r .   The gear mesh interface is 
represented by a periodically time-varying mesh stiffness 
function )(tk  and a viscous damper c.  Here )(tk  takes into 
account the parametric excitation due to the mesh stiffness 
variation caused by the fluctuation of number of tooth pairs 
in contact.  A clearance type non-linear restoring function g 
is included to represent the gear backlash of magnitude b2 .  
An external displacement excitation )(te  is also applied at 
the gear mesh interface to represent manufacturing errors 
and intentional modifications of the tooth profile.  Friction 
forces at the gear tooth contact are neglected, and the shafts 
and bearings supporting the gears are assumed to be rigid.    
With these assumptions, the governing equation of motion 
represented by the single-degree-of-freedom dynamic model 
shown in Figure 2 is given for a coordinate 

)()()()( 2211 tetrtrtx −+= θθ  as  
 

)()]([)( temFtxgtkxcxm ee &&&&& −=++ , (5a) 
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where an overdot denotes differentiation with respect to 
time t, and 1T  and 2T  are constant torque values applied to 
the pinion and gear, respectively.  Torque fluctuations are 
not considered in this model as the experimental setup 
described later is suitably designed to maintain a constant 
torque value.  In eq. (5), )(tx  represents the difference 
between DTE defined in eq. (1) and the unloaded STE.   

The governing eq. (5) can be non-dimensionalized by 
defining a characteristic frequency emn mk=ω  and a 
characteristic displacement b (half backlash).  Here nω  is 
the undamped natural frequency of the corresponding linear 
time-variant system where mk  is the mesh stiffness, i.e. 

)()( tkktk am += . Defining a dimensionless time tnωτ = , 
a viscous damping ratio )2/( mekmc=ζ  and 
dimensionless displacements bxx /)()( ττ =  and 

bee /)()( ττ = , one obtains 
 

[ ] ),()]([)(12 τττζ efxgkxx a ′′−=++′+′′  (6a) 
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where )/( bkFf m= , maa kkk /)()( ττ = , and )( ′  denotes 
differentiation with respect to τ . 

One of the main disadvantages of this model is its 
dependence on the deformable-body model to determine the 
gear mesh parameters )(tk  and )(te .  The involute profile 
modifications are represented in this model by )(te  that 
corresponds to unloaded STE.  Hence, a static analysis is 
performed on the deformable-body model developed for the 
same gear pair, described in detail in Section 2.1, under 
unloaded conditions for several discrete positions over a 
period of one mesh cycle to determine )(te .  Similarly, the 
mesh stiffness function )(tk  is obtained from the same 
static analysis of the deformable-body model, now under 
operating load conditions.  As the gears rotate, the number 
of teeth in contact changes resulting in time-varying mesh 
stiffness.  This analysis is repeated at the same discrete 
rotational positions over a mesh cycle to obtain the loaded 
static transmission error (LSTE).  This is used to estimate 
the mesh stiffness at each discrete position i as  
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Both )(te  and )(tk  are represented in Fourier series form in 
the model.  The nonlinear differential equation of motion (6) 
is solved numerically by using a fourth order, variable step 
Runge-Kutta (Dormand-Prince pair) numerical integration 
routine available in MATLAB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Discrete dynamic model a spur gear pair. 
 

3.  Validation of Dynamic Models 
3.1. Experimental Study.   A power circulation type 

test machine shown in Figure 3 is employed for the 
experimental study.  The same test machine was used 
previously to study nonlinear behavior of spur gear pairs 
including jump discontinuities, parametric resonances and 
chaotic motions [16-18].  Experimental investigations on the 
influence of certain design parameters such as tooth profile 
modifications [19] and contact ratio [20] on the dynamic 
behavior of spur gear pair were also performed using the 
same machine.   

A detailed description of the test machine can be found 
in reference [16].  It is of primary interest here to note that 
the test gear set shown to the left in Fig. 3 are well-isolated 
from the reaction gear box through massive flywheels, 
elastomer couplings and flexible shafts, such that influence 
of the reaction gear pair on the dynamic behavior of the test 
gear system is negligible.  A constant torque is applied to 
the closed loop thorough a split coupling.  Each test gear is 
assembled on its shaft precisely to avoid any mounting 
error.   A pair of precision spherical roller bearings supports 
the bearings that are housed in the bearing caps.  The 
bearing caps and the bearings pedestals are such that there 
are no shaft misalignments.  In addition, the bearing 
pedestals and the bed-plate of the test machine are rigid. 

A rotational speed range of 500 to 4000 rpm (415 to 
3330 Hz of mesh frequency) is considered for each test.  
The accelerometer based DTE measurement system consists 
of four diametrically opposed linear accelerometers on each 
test gear shaft that are mounted near the gear blanks 
tangentially at a certain radius such that 1θ&&  and 2θ&&  can be 
measured with any gravitational effects cancelled out. These 
signals are combined using analog circuitry to obtain 

2211
22 /)( θθ &&&& rrdtDTEd += , which is integrated twice to 

obtain DTE.  Details of this method and the signal 
processing can be found in reference [16].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Gear dynamics test machine. 
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Different sets of spur test gear pairs are considered in the 
experimental study representing different modification 
parameters and involute contact ratios (ICR).  Experimental 
test matrix covered an ICR range between 1.0 and 2.0 as 
well as different magnitudes of linear profile tip relief 
( 4,0=δ and 10 µm) and different roll angles where the tip 
relief starts ( o9.20=α representing the pitch point, 

o2.22=α near the highest point of single tooth contact, 
o6.23=α  and o8.24=α ).  Due to space limitations, this 

paper will use data from a small subset of this experimental 
study formed by the three gear pairs shown in Figure 4.  
Table 1 lists the common gear design parameters of the test 
gears.  Each gear pair is formed by identical gears (unity 
ratio) and operated at a 150 mm center distance.   

Each gear set was tested at several torque levels up to 
350 N-m while only the results for 170 Nm and 340 Nm are 
included in this paper.  The rotational speed was varied 
between 500 and 4000 rpm with an increment of nearly 50 
rpm and root-mean-square (rms) value of the measured DTE 
at each speed increment was recorded under steady state 
conditions.   In  order  to  capture  jump-up  and  jump-down 

 
 

Table 1: Common design parameters of the spur gear pairs 
used for the model validation. 

______________________________________________ 
 Number of teeth 50 
 Module, mm 3.0 
 Pressure angle, deg. 20.0 
 Pitch diameter, mm 150.0 
 Base diameter, mm 140.954 
 Outside diameter, mm variable 
Normal circular tooth thickness, mm 4.64 
 Helix angle, deg. 0 
 Tooth profile modifications  variable 

__________________________________________________ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The test gear pairs used in this study. (a) 0=δ , 
8.1=ICR ,  (b) mµδ 10= , 9.20=δ deg, 8.1=ICR , and 

(c) 0=δ , 4.1=ICR . 
 

type nonlinear phenomena, tests were repeated for both 
speed-up and speed-down conditions. 
 

3.2 Comparison of Measured and Predicted DTE 
Values.   Dynamic analyses are performed using both 
models for different sets of gear pairs described in the 
previous section.  The models are validated by comparing 
the predicted DTE values with the measured ones.  The 
deformable-body model for one of the example gear pairs is 
shown in Figure 1.  Lumped inertias were added to the gear 
inertias to account for the difference in the width between 
gear teeth and the blank. The Rayleigh damping coefficients 
were chosen as 479=µ and 7)10(4.1 −=η  [28] so that the 
damping ratio is about one percent as determined by the 
experiments.   

In order to capture jump-up and jump-down type 
nonlinear phenomena as in experiments, simulations were 
also repeated for both speed-up and speed-down conditions 
within a range of 500 to 4000 rpm (gear mesh frequency 
415 to 3330 Hz) with a increment between 50 to 150 rpm.  
In order to reach steady state motions, each deformable-
body analysis was performed in four different stages.  First, 
the system was ramped up (or down) to the desired speed in 
a relatively smaller number of very coarse time steps (25 
mesh cycles with 8 time-steps per mesh cycle).  A second 
stage of simulation was performed at this constant speed to 
surpass the transients using a coarse time step (30 to 50 
mesh cycles with about 20 time steps per mesh cycle), 
followed by a more refined third stage (25 mesh cycles with 
50 points per mesh cycle) to reach steady state motions.  
The final stage of simulation used a very small time step (4 
mesh cycles with 128 points per mesh cycle) to capture all 
dynamic motions to the desired resolution.  This final 
section of data was used to extract steady state response.  
Here, the main reason for performing the last two stages 
separately was that stress calculations increase the 
computational time by more than a factor of two.  Hence, by 
enabling stress calculations only in the final stage of 
analysis, significant amount of computational effort was 
saved without compromising the required resolution of 
response.  As in the case of an actual speed sweep, the last 
simulation point of the steady state motion from the 
previous speed increment was considered as the initial 
condition for the ramp-up (ramp-down) followed by a 
refined steady-state simulation. 

For the discrete model simulation, gear inertias were 
calculated using the disk approximation and gear mesh 
parameters were obtained from the quasi-static analysis of 
deformable-body model.  Speed changes were introduced in 
sudden step increments.  However, since the simulation is 
extremely fast compared to that of the deformable-body 
model, a much smaller speed increment was used and the 
simulation at each speed increment was carried out with a 
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refined time step (about 125 mesh cycles with 128 points 
per mesh cycle).  

In the deformable-body model, time histories of DTE 
were calculated from the angular displacements of the 
pinion and gear using eq. (1).  Time histories of the dynamic 
mesh force (DMF) were obtained by adding all the 
individual dynamic tooth forces (DTF).  Fast Fourier 
Transform (FFT) of the each time history is used to 
compute the root-mean-square (rms) values of DTE and 
DMF.  Maximum and minimum principal stresses, maxσ  
and minσ , were computed at several pre-determined root 
locations ranging from the root center to the start of active 
profile.   

In the case of the discrete model, DMF at a given time 
τ  is defined as 

 

 { })]([)](1[2)( ττζτ xgkxbkDMF am ++′=  (8) 
 

Here, it may be noted that the magnitude of the damping 
force term is very small compared to the stiffness force term 
and hence may be neglected in the calculation of the total 
gear mesh force.  Individual dynamic tooth forces (DTF) 
were calculated using an approximate formula given by 

 

 )(]
)(

[)( τ
τ

τ DMF
SMF

STF
DTF =  (9) 

 
The static tooth force )(τSTF  is obtained from the 
deformable-body model for one complete mesh cycle under 
quasi-static conditions.    

Data from three gear sets shown in Figure 4 are 
presented here for validation of the models.  In Figure 5 for 
the first gear pair having no profile modification ( 0=δ ) 
and 8.1=ICR  at 340 Nm, the rms values of the measured 
DTE are compared to predictions of both models within the 
entire mesh frequency range of interest.   It is observed in 
Figure 5 that the predictions of the deformable-body model 
match measured data very well in terms of both overall 
amplitudes and the shape of the forced response.  The 
measured primary resonance near 3100 Hz as well as the 
first two super-harmonic resonances near 1550 and 1000 Hz 
are predicted accurately by the deformable-body model.  
The amplitudes of the DTE are also predicted accurately in 
both resonance and off-resonance regions.  In addition, the 
measured nonlinear behavior characterized by a frequency 
range of double stable motions (a lower branch no-contact-
loss motion and an upper branch tooth separation motion) 
bounded by jump-up and jump-down discontinuities also 
match well with the experimental data.  The same 
conclusions can also be reached for the discrete model with 
one exception that the DTE predictions of this model along 
the upper branch tooth separation motions are somewhat 
larger than the experimental data as well as the deformable-
body model predictions.  This might be because the model 

shown in Figure 2 is a relatively simple one with many 
secondary effects neglected including gear blank 
deflections.   

Figures 6 and 7 present the same type of comparison for 
the other two gear pairs at 340 Nm and 170 Nm 
respectively.  In Figure 6 for a 8.1=ICR  gear pair with a 
linear tip relief of mµδ 10= starting at the pitch line 
( 9.20=α deg roll angle), the nonlinear behavior is 
significantly less and the forced response is nearly linear.  
This is attributed to the fact that the applied load of 340 Nm 
corresponds to the “design load” for the profile 
modifications made on the gear pair [19].  Because of this, 
the discrete model compares with experiments as good as 
the deformable-body model.   Meanwhile, the non-linear 
jump discontinuities due to tooth separations are again 
evident in Figure 7 for the third gear pair having no profile 
modifications ( 0=δ ) but a different involute contact ratio, 

4.1=ICR  at 170 Nm.  Similar to Figure 5, both models 
compare well with the measured data while the discrete 
model predicts larger upper branch motions with 
separations.  In addition to the good agreement in terms of 
the rms values of DTE, the harmonic components of 
predicted DTE also compare well with the experiment.  
Figure 8 illustrates this for the gear pair used in Figure 6 at 
gear mesh frequencies of 1.5, 2.1 and 2.9 kHz.    

Comparisons to experimental data from gear pairs 
having parameters different from those shown in Figure 4 
were also made in this study with the same level of 
agreement.  For instance, gear pairs having different 
modification amplitudes (say mµδ 4= ) were tested and 
simulated at torque levels other than the ones considered 
here to demonstrate that both models are indeed capable of 
predicting the dynamic response of a gear pair accurately.  
These additional comparisons can be found in reference 
[33].   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Comparison of measured and predicted rms 
values of DTE for an unmodified gear pair with 0=δ  and 

8.1=ICR  at 340 Nm. 
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Figure 6: Comparison of measured and predicted rms 
values of DTE for a modified gear pair with mµδ 10= , 

9.20=α deg. and 8.1=ICR  at 340 Nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Comparison of measured and predicted rms 
values of DTE for an unmodified gear pair with 0=δ  and 

4.1=ICR  at 170 Nm. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Comparison of the harmonic amplitudes of 
measured and predicted DTE for mµδ 10= , 9.20=α deg. 
and 8.1=ICR  at 340 Nm.  (a) 1500 Hz, (b) 2100 Hz, and 
(c) 2900 Hz. 

4.  Comparison of DTE and Different Forms of DF 
Next, the validated dynamic models introduced earlier 

will be used to investigate the relationship between the 
DTE, a commonly measured and predicted noise metric, and 
different forms of dynamic factors that have been used in 
design to account for the increase in forces and bending 
stresses due to dynamic effects.  Before this can be done, 
different versions of DF will be defined here based on the 
total gear mesh force, individual tooth forces and the 
principal bending stresses.  The dynamic mesh force factor 

mfDF )(  will be defined as the ratio of the maximum value 
of the dynamic mesh force in one complete mesh cycle of 
the steady-state response to the static mesh force: 

 

 
SMF

DMF
DF mf

max)(
)( =  (10a) 

 
where === 2211 rTrTSMF constant.   Similarly, the 
dynamic tooth force factor tfDF )(  is the ratio of the 
maximum value of the dynamic tooth force in one complete 
mesh cycle of the steady-state response to the maximum 
value of the static tooth force during the same mesh cycle: 
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STF
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DF tf = . (10b) 

 
Finally, the dynamic stress factor σ)(DF  is defined as the 
ratio of the maximum value of the dynamic bending stress 

dσ  on the gear tooth in one complete mesh cycle of the 
steady-state response to the maximum value of the static 
bending stress sσ  during one mesh cycle. 
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Figures 9, 10 and 11 compare these three types of DF 

predicted by both dynamic models to the predicted DTE 
values for the gear pairs used in Figures 5, 6 and 7, 
respectively.  In these figures, the top figure displays 

mfDF )( , tfDF )(  and σ)(DF  together with DTE as 
predicted by the deformable-body model while the bottom 
figure shows discrete model predictions of mfDF )( , 

tfDF )(  and DTE.  σ)(DF  is not included in the bottom 
figures since the discrete model is not capable of predicting 
stresses.   In Figures 9 to 11, the vertical axis for mfDF )( , 

tfDF )(  and σ)(DF  is shown on the left hand side and the 
vertical axis for DTE is to the right.   

Focusing on the deformable-body model predictions 
first (Figures 9(a), 10(a) and 11(a)), it is seen that (i) values 
of tfDF )(  and σ)(DF  are very close to each other 
regardless of the mesh frequency, and (ii) mfDF )(  and rms 
values of DTE are proportional to each other.   The first 
observation is somewhat expected since the tooth force and 
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the resultant bending stress can be considered to be linearly 
proportional to each other, at least when only the tooth 
bending effects are considered.    It can also be stated that 

mfDF )(  is always significantly larger than both tfDF )(  
and σ)(DF .  For instance at 2750 Hz in Figure 9, lower 
branch motion has 1.1)()( =≈ σDFDF tf  and 

4.1)( =mfDF  while the upper branch motion yields 
8.1)( =tfDF , 0.2)( =σDF  and 75.2)( =mfDF .  At this 

frequency, a design based on mfDF )(  would be about 30 
percent more conservative than that of tfDF )(  or σ)(DF . 

A comparison between the predictions of both models in 
Figures 9 to 11 reveals that the discrete model agrees well 
with the deformable-body model in predicting DF.  This has 
practical consequences since the discrete model is several 
orders of magnitude faster than the deformable-body model.  
Also since tfDF )(  and σ)(DF  are  rather  close  to  each  
other,  the discrete model can provide a dynamic factor that 
can be readily used for design purposes.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Comparison of mfDF )( , tfDF )( , σ)(DF  and 
rmsDTE)(  for an unmodified gear pair with 0=δ  and 

8.1=ICR  at 340 Nm. (a) Deformable-body model and (b) 
discrete model. 

4.1 Relationships Between DTE and Different 
Forms of DF.    Earlier, DF values were shown to follow 
the same overall trends as DTE predictions as the mesh 
frequency is varied.  Here, certain relationships between 
different forms of DF and DTE will be sought.  If this can 
be accomplished, measurement of DTE, which is in many 
cases a more feasible task than measurement of DF 
especially for finer pitch gears, could be used as an indirect 
measure of DF for design purposes. This would also provide 
the well-established DTE database to be used for durability 
purposes.  Here, an attempt has been made to relate DTE to 
both mfDF )(  and σ)(DF  (and indirectly to σ)(DF ).  

For the relationship between DTE and mfDF )( , half of 
the peak-to-peak values of DTE and DMF , denoted by 

poDTE −)(  and poDMF −)(  were normalized with respect 
to λ  and SMF, respectively.  Here, λ  corresponds to the 
difference    between    the   average   values  of   LSTE   and  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Comparison of mfDF )( , tfDF )( , σ)(DF  and 

rmsDTE)(  for a modified gear pair with mµδ 10= , 
9.20=α deg. and 8.1=ICR  at 340 Nm. (a) Deformable-

body model and (b) discrete model. 
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unloaded STE given by aveave eLSTE −= )(λ .  These two 
normalized parameters at all mesh frequencies are plotted 
against each other in Figure 12 for all the three gear pairs 
considered earlier as predicted by the discrete model.  In 
these figures, the slope for the no contact loss solutions is 
nearly equal to unity and hence    

 

 
λ

popo DTE
SMF

DMF −−
≈

)()(  (11a) 

 
Rearranging this equation as  

 

 1
)()(

+≈
+ −−

λ

popo DTE
SMF

SMFDMF
, (11b) 

 
letting  max)()( DMFSMFDMF po =+− , and using the 
earlier definition of mfDF )(  given by eq. (10a), one writes 
the first relationship of interest as 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Comparison of mfDF )( , tfDF )( , σ)(DF  and 

rmsDTE)(  for an unmodified gear pair with 0=δ  and 
4.1=ICR  at 170 Nm. (a) Deformable-body model and (b) 

discrete model. 

 1
)(

)( +≈
−

λ

po

mf
DTE

DF . (12) 

 
This relationship between mfDF )(  and DTE is quite 
accurate in the linear frequency regime when no contact loss 
occurs, but would give a conservative estimate mfDF )(  in 
the non-linear regime.  This is evident in Figures 12(a) and 
12(c) for the regions of tooth separation where the slope is 
nearly one-half.   As a matter of fact, eq. (11a) can be 
rewritten as 

 

 popo DTESMFDMF −− ≈ )]([)(
λ

 (13) 

 
where the slope can be physically interpreted as the average 
value of stiffness.  In the non-linear region, because the 
teeth separate during a portion of the mesh cycle, the 
average value of stiffness is reduced.  Hence the decrease in 
slope observed in Figures 12(a) and 12(c) should be 
expected.   

The second relationship between σ)(DF  and DTE is 
illustrated with the help of Figures 13(a-c) obtained by 
using the predictions of the deformable body model for the 
same three gear pairs.  These figures plot σ)(DF  against 

max)(DTE  that is normalized with respect to max)(LSTE .  
Figures 13 demonstrate a direct linear relationship between 
these two parameters such that   

 

 
max

max
)(
)(

)(
LSTE
DTE

DF ≈σ  (14) 

 
This relationship provides a very good approximation for 

σ)(DF  in both linear and nonlinear regimes and can be 
used for design purposes in estimating σ)(DF  from DTE. 
 
5. Conclusion 

In this study, two different dynamic models of varying 
complexity were developed and validated by comparing the 
predicted DTE values to the available experimental data.  
The deformable-body model is capable of predicting DTE, 
tooth forces as well as the tooth bending stresses.  The 
discrete model uses the results from the quasi-static analysis 
of the deformable-body model to predict the DTE, and gear 
mesh and tooth forces.  Three different dynamic factors 
were defined and their values were compared with that of 
DTE in both linear and nonlinear motion regimes.  Dynamic 
factors based on tooth forces and bending stresses were 
shown to be approximately equal while dynamic factors 
based on total gear mesh forces are consistently higher that 
the other two types of dynamic factors.  At the end, simple 
design formulas were proposed to relate DTE to dynamic 
factors based on gear mesh forces and stresses.   
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Figure 12. Normalized values of poDMF −)(  versus 

poDTE −)(  for (a) 0=δ , 8.1=ICR ,  (b) mµδ 10= , 
9.20=α deg, 8.1=ICR , and (c) 0=δ , 4.1=ICR . 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 13: σ)(DF  versus max)(DTE  for (a) 0=δ , 
8.1=ICR , (b) mµδ 10= , 9.20=α deg, 8.1=ICR , and 

(c) 0=δ , 4.1=ICR . 
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