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Abstract—A Simplex type algorithm is used to impose frictional contact conditions on finite element
models of bodies that move close to trajectories that can be determined from kinematic constraints on
the bodies. The method is demonstrated by computing the load dependent static transmission error and

load sharing of a pair of gears in mesh.

INTRODUCTION

Contact between bodies is a very complex phenom-
enon. Not only is the very nature of contact and
friction not completely understood, but even the very
simplest friction models like Coulomb friction can
pose difficulties that are only now being overcome.

In the area of contact analysis in the context of
finite elements, much progress has been made and
previous researchers have used a variety of tech-
niques, including various iterative and mathematical
programming methods, the method of Lagrange
multipliers and the penalty method.

Penalty methods have been used by Endo et al. [1]
and Simo et al. [2] to enforce contact constraints.
Another possibility is the use of Lagrange multipliers
to enforce these constraints. Bathe and Chaudhury
[3, 4] applied the method of Lagrange multipliers to
solve the two- and three-dimensional dynamic fric-
tional contact problem. In a recent paper, Chen and
Tsai [5] used a mathematical programming technique
along with Lagrange multipliers to enforce sliding
contact conditions. Stein et al. [6] have used a per-
turbed Lagrangian technique to enforce contact
conditions in the postbuckling analysis of shells.
Glowinski et al. [7] showed the use of an ‘augmented’
Lagrangian formulation of the penalty method.

Nour-Omid and Wriggers [8] demonstrated the use
of a two-level iteration scheme. They described exist-
ing methods such as the method of Lagrange multi-
pliers and the penalty method and demonstrated how
a two-level scheme can be used to efficiently solve the
equations that result. Numerical examples were given
for two-dimensional fractionless contact between two
bodies. Rahman et al. [9], Torstenfelt[10,11] and
Zolti[12] also showed the use of techniques that
iteratively determine the contact conditions.

Gap elements such as those of Mazurkiewicz and
Ostachowicz [13], the contact elements by Mehlhorn
et al. [14] and the contact elements of Wunderlich
et al.[15] allow the analysis of contact within a
generalized finite element code such as ADINA.

Mathematical programming methods such as quad-
ratic programming have long been used in structural
analysis for plastic limit analysis (de Freitas[16]).
Chand et al.[17] and Lee and Kwak [18] use a modi-
fied Simplex quadratic programming method and
Hung and de Saxce [19] applied a mathematical pro-
gramming technique to the frictionless static contact
problem, and Talaslidis and Panagiotopaulos [20]
have developed another mathematical programming
technique which uses the associated variational in-
equality to solve the dynamic frictional contact prob-
lem. Stavroulakis et al. [21] have expressed the prob-
lem of static frictional contact between a pipeline and
a rigid sea-floor as a quadratic programming problem
and have suggested an iterative method for its
solution.

For mechanisms which, due to kinematic con-
straints, move close to predetermined trajectories the
dynamic contact problem can be /inearized to a series
of linear programming problems, for which efficient
solution techniques exist. Gears, cams, shafts and
many types of linkages would fall into this category.
This technique of converting the contact problem
into a linear programming problem has hitherto not
been applied to problems with friction, and this paper
shows that it is a natural and elegant way of dealing
with frictional contact and should make tangible the
solution of large contact problems.

LINEARIZATION OF THE CONTACT CONDITIONS

The working assumption for the following devel-
opment is that the bodies undergo deformations that
are small in comparison to the dimensions of the
body, and that they move along trajectories that are
very close to ideal motion (such as in the work by
Agrawal and Shabana [22]). The deviation from ideal
motion does not substantially affect the direction of
the normal vector or the direction of the relative
sliding velocity vector of the bodies at the candidate
points for contact. Friction is assumed to obey
Coulomb’s law.
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Let there be a total of N bodies in contact with
each other. Consider body i which has been dis-
cretized into a finite element mesh. It is assigned a
reference frame X; to which it is attached by means
of appropriate constraints. Let r; be the vector of
unconstrained degrees of freedom of the finite
element mesh with respect to X;, and let ¢, be
the corresponding load vector. Then the stiffness
equation relating ¢; and r, is of the form:

[K]ri=¢,.

The stiffness matrix [K;] can be obtained by con-
ventional finite element methods. If the body has
been properly attached to its reference frame, then
this stiffness matrix will be invertible.

Each reference frame X; has three degrees of free-
dom, of which any of the degrees may be constrained.
Let 6, be a vector containing the unconstrained
degrees of freedom of X; and let 4, be a vector
containing the corresponding generalized loads. Vec-
tors @ and 4 are defined as
0=07,07,...,00)" and A=(AT,Al,... A0)7.
Let L be the number of elements in each of these
vectors. Let (P, ,, P,,,) be a pair of points on bodies
i, ,and i, ,, respectively, where m = 1,2, ... M. Here
M is the total number of such pairs. These pairs of
points are candidates for contact and will be termed
candidate point pairs (CPP). A common surface
normal to the two bodies passes through points P, ,
and P,,, as shown in Fig. 1. Let ¢, be the initial
separation of the two bodies at the CPP m along the
common normal before elastic deformation, as-
suming that the bodies with their reference frames are
at their kinematically computed positions, and let J,,
be the increase in separation of the bodies due to
elastic deformation along the common normals. Let
d,, be the final separation along the common normal
and p,, be the compressive normal force at the CPP
m. Let f,, be the magnitude of the frictional force in
the direction of the relative velocities. (It is always a
positive scalar.)

Hence,

d,=¢,+6,=20 and p,=>0.

Assuming that sliding contact takes place,

S = 1Dy,
and either
pm=0 or d,=0.
For conciseness, let
€=(€6,6,...,60)7, 8=0(8,,05...,0)7,
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d=(d,,d,,...,dy)",

P= (pl’pZ’ s ’pM)T

f=(f,f,...,6)"

From the geometry of the system, it is possible to
use the stiffness matrices of the bodies with respect to
their reference frames and the relative orientations of
these reference frames to arrive at a linear relation-
ship that shows the dependence of the vector & on p,
f and 0 for small deformations:

o =[4,]p+[4/)f+[C]0.
Likewise, from equilibrium considerations, it is
possible to obtain a relationship between the gener-

alized loads on the reference frame and the contact
forces. This relationship will also be linear.

A =[B,]p+I[B/f.
Hence

0 =([4,]+ u[4Dp +[C10
=[4]p +[C]0 (say)

and

4 =((B,] + u[B/Dp = [Blp (say).
The final separation after deformation is, therefore,
d=e¢+[A]p+][C]6.
The contact problem may then be stated as:
Solve

A=[B]p and e=d—[4A]p—[C]0
for d, p and 0
given the separations € and loads 4

subject to the conditions p >0, d >0 and

for each CPP m =1,2,3,..., M,
either d,=0 or p, =0. (1)

SOLUTION OF THE CONTACT EQUATIONS

Technique 1

A straightforward way of solving the contact
equations [eqns (1)] would be to follow the method
of Conry and Seireg [23, 24] and pose it in the stan-
dard form for linear programming problems [25],
which can then be solved by a modified version of the
Simplex method. Introduce the new variables 6 * and
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0~ such that
0=0"—-0"
and the ‘artificial’ variables z (see Hadley [25]).
Physically, the artificial variables z represent the

equilibrium imbalance. Then the contact problem in
the standard linear programming form would be:

L
Minimize ), z,

i=1

subject to

z
[mo (B 0 0] d
0o m -1l -] €1,
.

z>0, d>0, p=0, 0% >0,

}

=0

and the additional condition:

either

d,=0 or p,=0
for each
CPPm=1,2,3,.... M. ?2)

The additional condition is imposed in the Simplex
procedure by requiring that no vector be allowed to
move into the basis if it causes a violation of this
condition. However, due to this modification of the
Simplex algorithm, there is no longer a guarantee that
the procedure will always find the solution when there
is one. It was observed for several cases that the
procedure reached a deadlock even though a solution
existed, i.e. the condition imposed on the movement
of vectors prevents the procedure from moving
towards the solution.

Technique 2

This technique is also like the Simplex method, but
with major changes. While the Simplex technique
moves from one basic feasible solution to another
while eliminating the artificial variable z; from the
basis, this technique will eliminate these artificial
variables in its first stage, ending up with values for
the other variables which might violate the non-
negativity conditions. In its second stage, an iterative
procedure ‘connects’ and ‘disconnects’ the bodies at
the appropriate CPPs until all non-negativity con-
straints are satisfied.

First an initial ‘tableau’ [T] (see [25]) is set up:

[ oo B o
m‘[o 1 —[4] —[C]]'

Fig. 1. The candidate point pair (P, ,,, P,,).

The starting basic solution vector s is

={d}

corresponding to a starting basis

2
b= )
M+L

in other words, the starting solution is:

S o N

If T, # 0 then it is possible to move from one basic
solution and its tableau to the new basic solution and
tableau that would be obtained by eliminating the
variable x, from the basis and replacing it by the
variable x, as follows (apostrophes denote new
values):

Si=8S—==9
Lk

i=1,2,3,...,(M+L) and i#l,

S;=sl/Tl,k’

T, =T, T

W= T, Lj
i=1,2,3,...,(M+L) and i#/,

j=1,2,3,...,2(M +L)
T;,j= T/,j/T/,k

j=1,23,...,2M +L)
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Table 1. An algorithmic description of Stage I

procedure stage I
fori=1to L do

for some j, such that the pivot #0 and d; is in the basis,

do

replace z; from the basis by p;.
replace d; from the basis by 6,.

enddo
enddo

b;=b;
i=1,23...,(M+L) and i#!
b=k
and
x;=s; if there exists a j such that

b=i,j=1,2,3,...,. M+ L,
x; =0 otherwise.

Unless other checks are made, this transformation
does not ensure that the basic variables are non-
negative. The term 7, will be called the pivot for this
transformation.

Stage I: Initially, the variables that are in the basis
(and are therefore non-zero) are z and d. At the end
of Stage I, z will be eliminated from the basis and will
hence be forced to zero. In other words, the system
of bodies will be in equilibrium. Table 1 shows an
algorithmic description of this stage.

Stage II: At the beginning of Stage II, the system
is in equilibrium, although some of the non-negativity
constraints may not be satisfied, meaning that there
may be CPPs which carry a negative compressive
load or have a negative separation. Also, all of the
variables 6,i = 1,2, ..., L are in the basis along with
one of d,, or p,,, foreachm =1,2,3,... , M. If d,, is
in the basis (and is therefore possibly non-zero), then
this means that the CPP m is ‘disconnected’ and
carries no load and that the separation between the
two bodies at this CPP in the surface normal direc-
tion is d,. If p, is in the basis (and is therefore
possibly non-zero), then the CPP m is ‘connected’ and
carries the compressive load p,,. But at the end of
Stage I the values of the variables may be negative.
At the end of Stage II, all non-negativity constraints
are satisfied. Table 2 shows an algorithmic descrip-
tion of Stage II. If the system of contact bodies is
unstable (such as the two-body system in Fig. 2) the
procedure diagnoses this condition. Such an in-
stability may also be caused by improperly chosen
CPPs. When the procedure terminates, the solution is
available in the vector x.

NUMERICAL EXAMPLE

The case of gears with involute profiles is a particu-
larly good example of the application of this method.
Let body 1 be the ‘input’ gear and body 2 be the
‘output’ gear. Their reference frames are attached to
rigid shafts that rotate with the gears. Reference
frame X, has no unconstrained degrees of freedom
because the location of its origin as well as its angular
orientation are prescribed. Reference frame X, has its
origin at a prescribed location, but is allowed to
rotate by a small amount about its kinematically
computed angular position. Thus it has one
(rotational) degree of freedom 6,. The generalized
load associated with this degree of freedom is the
output torque M,. 6, is defined to be the transmission
error of the gear pair and will depend on the pre-
scribed value for the output torque M,.

As mentioned earlier, it is straightforward to com-
pute the matrices [4] and [C] such that

d=c+[A]p+[C6,.

Taking moments about the output shaft axis yields an
equilibrium equation of the form

M, =[B]p.

Figures 3 and 4 show the finite element model of
the two-gear system. Both gears have 20 teeth, a
pressure angle of 20 degrees, an addendum constant
of 0.75, dedendum constant 1.4 and a diametral pitch
of 10in~!. The center distance is 2.0in. Figure 5
shows a sample choice of candidate point pairs for a
particular orientation of the gears. The maximum
allowable distance between the two points in the pairs
has been exaggerated for this figure. Such pairing has
to be carried out for each individual orientation of
the gears.

The output gear was loaded with a known moment
M, and the contact equations were solved for 50
different orientations of the gear within each tooth
cycle. The input torque M, and the transmission error
6, were thus obtained. Figure 6 shows two different
curves, one for when the coefficient of friction was
chosen to be zero and the other for when it was 0.3.
This coefficient of friction is much higher than would
be observed for lubricated gears, but was chosen to
illustrate the effect of friction. In both cases, the
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Table 1. An algorithmic description of Stage I

procedure stage I
fori=1to L do

for some j, such that the pivot #0 and d; is in the basis,

do

replace z; from the basis by p;.

replace d; from the basis by 6

enddo
enddo

i

b;=b,
i=1,23,...,(M+L) and i#I
b=k
and
x;=s; if there exists a j such that

b=i,j=1,2,3,..., M +L,
x; =0 otherwise.

Unless other checks are made, this transformation
does not ensure that the basic variables are non-
negative. The term T, will be called the pivot for this
transformation.

Stage I: Initially, the variables that are in the basis
(and are therefore non-zero) are z and d. At the end
of Stage I, z will be eliminated from the basis and will
hence be forced to zero. In other words, the system
of bodies will be in equilibrium. Table 1 shows an
algorithmic description of this stage.

Stage II: At the beginning of Stage II, the system
is in equilibrium, although some of the non-negativity
constraints may not be satisfied, meaning that there
may be CPPs which carry a negative compressive
load or have a negative separation. Also, all of the
variables 0,7 = 1,2, ..., L are in the basis along with
one of d,, or p,,, foreachm =1,2,3,... ,M.If d,, is
in the basis (and is therefore possibly non-zero), then
this means that the CPP m is ‘disconnected’ and
carries no load and that the separation between the
two bodies at this CPP in the surface normal direc-
tion is d,. If p, is in the basis (and is therefore
possibly non-zero), then the CPP m is ‘connected’ and
carries the compressive load p,,. But at the end of
Stage I the values of the variables may be negative.
At the end of Stage II, all non-negativity constraints
are satisfied. Table 2 shows an algorithmic descrip-
tion of Stage II. If the system of contact bodies is
unstable (such as the two-body system in Fig. 2) the
procedure diagnoses this condition. Such an in-
stability may also be caused by improperly chosen
CPPs. When the procedure terminates, the solution is
available in the vector x.

NUMERICAL EXAMPLE

The case of gears with involute profiles is a particu-
larly good example of the application of this method.
Let body 1 be the ‘input’ gear and body 2 be the
‘output’ gear. Their reference frames are attached to
rigid shafts that rotate with the gears. Reference
frame X, has no unconstrained degrees of freedom
because the location of its origin as well as its angular
orientation are prescribed. Reference frame X, has its
origin at a prescribed location, but is allowed to
rotate by a small amount about its kinematically
computed angular position. Thus it has one
(rotational) degree of freedom 6,. The generalized
load associated with this degree of freedom is the
output torque M,. 6, is defined to be the transmission
error of the gear pair and will depend on the pre-
scribed value for the output torque M,.

As mentioned earlier, it is straightforward to com-
pute the matrices [4] and [C] such that

d=e+[A]p+[C6,.

Taking moments about the output shaft axis yields an
equilibrium equation of the form

M, =[Blp.

Figures 3 and 4 show the finite element model of
the two-gear system. Both gears have 20 teeth, a
pressure angle of 20 degrees, an addendum constant
of 0.75, dedendum constant 1.4 and a diametral pitch
of 10in~'. The center distance is 2.0in. Figure 5
shows a sample choice of candidate point pairs for a
particular orientation of the gears. The maximum
allowable distance between the two points in the pairs
has been exaggerated for this figure. Such pairing has
to be carried out for each individual orientation of
the gears.

The output gear was loaded with a known moment
M, and the contact equations were solved for 50
different orientations of the gear within each tooth
cycle. The input torque M, and the transmission error
0, were thus obtained. Figure 6 shows two different
curves, one for when the coefficient of friction was
chosen to be zero and the other for when it was 0.3.
This coefficient of friction is much higher than would
be observed for lubricated gears, but was chosen to
illustrate the effect of friction. In both cases, the
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Table 2. An algorithmic description of Stage II

Procedure stage 11
repeat until (p, >0 and d; >0 for alli=1,2,...,M)
if (for some i, d; < 0) then
connect (i)
endif
if (for some i, p; <0) then
if (appropriate pivot # 0) then
disconnect (i)
else

Comment
If the pivot required to disconnect CPP i is zero, it means
that by disconnecting CPP i, the system becomes statically
unstable. Another (disconnected) CPP j should be found,
which when connected, will have a positive p; and will allow
CPP i to be disconnected. If no such CPP j exists, then the
system of bodies is either inherently statically unstable, or
the CPPs have not been chosen properly.
Endcomment
for (all j such that d; is in the basis) repeat
connect (j)
if (required pivot is still =0) then
disconnect (j)
Goto Next
endif
disconnect (i)
if (p; > 0) then
Goto Found
else
connect (i)
disconnect (j)
endif
Next:: continue
endfor
Write Message “‘Statically unstable system”
return
Found:: disconnect (i)
endif
endif
endrepeat
endprocedure

Procedure connect (i)
replace d; from the basis by p;.
endprocedure

Procedure disconnect (i)
replace p, from the basis by d,.
endprocedure

output torque is 1000 Ibin. Figure 7 shows trans-
mission error curves for M= 10001bin. with the
coefficient of friction =0.0 and 0.3, and for
M, =100 1bin. with the coefficient of friction = 0.3.
The transmission error curves clearly show parts
where single-tooth contact and double-tooth contact
takes place. As expected, the case with zero coefficient
of friction gives transmission error curves that are
symmetric. When a coefficient of friction is included,
the curves become skewed. Also as expected, at the
point where the direction of the frictional force
changes, a jump in the transmission error occurs and
the input torque M, equals the output torque M,
Fig. 2. Two bodies in statically unstable contact. exactly.
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Fig. 3. Finite element model of a two-gear system in
contact.

The transmission error profile is similar in charac-
ter to experimentally observed curves. Slight ‘noise’
has, however, been introduced in the transmission
error and input torque curves due to the fact that the
gear-tooth profiles have been approximated by
straight lines. It is encouraging note that this ‘noise’
in the transmission error is much smaller than the
transmission error itself. In order to model the
involute profile as closely as possible, a special

Fig. 4. Finite element model of a two-gear system in
contact.

SANDEEP M. VIJAYAKAR et al.

Fig. 5. Candidate point pairs chosen for a particular posi-
tion of the contacting gears.
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Fig. 6. Dependence of input torque on the coefficient of
friction.

five-noded linear transition element is used. This
allows a maximum possible number of nodes on the
surface while keeping the total number of nodes as
low as possible. Figure 8 shows the total of the
normal surface loads on the CPPs of each individual

/
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Fig. 7. Dependence of transmission error on the load
torque.
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gear tooth as the gears roll through, for the case with
M, =10001b in. and coefficient of friction = 0.0. As
expected, these coincide exactly with the theoretical
value of 1064 Ib.

CONCLUSIONS

It is the authors’ opinion that the Simplex type
algorithm described here is a natural choice for
contact problems. Although the discussion was ap-
plicable only to situations in which the bodies were
‘kinematically constrained’, a similar algorithm can
be used inside an outer iterative loop for more general
contact procedures. The stiffness matrices do not
need to be decomposed for each time step, as in the
penalty method or in the method of Lagrange multi-
pliers. It is also felt that this and similar techniques
will help make larger contact problems in three-
dimensions with a large number of candidate point
pairs easier to solve. Although the scope of this paper
necessitated considering only sliding friction, it is
possible to treat contact with sticking friction in a
similar manner.
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