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SUMMARY

A new kind of finite element is presented in this paper which is designed to work efficiently for bodies that
are either prismatic or ‘quasi-prismatic’ in shape. Quasi-prismatic shapes are those which can be obtained
from prismatic shapes by mere distortion. The element which is formulated in this paper may be coupled
with other types of three-dimensional elements to allow the modelling of structures which are only partially
prismatic or which have prismatic shapes within them. The element allows for a variety of boundary
conditions, yet yields meshes which are easy to generate. The performance of this element is evaluated by
numerical experiments that compare its results with analytical solutions for a thick cylinder problem and
a curved beam problem. The element has also been demonstrated on a turbine blade model.

INTRODUCTION

Finite element methods have been used for one-, two- and three-dimensional problems. Many
engineering problems that are currently modelled with three-dimensional elements have
cross-sections which remain constant or almost constant in one direction. These types of
geometries, which include gear teeth, turbine blades, tires, wheels, pipes, springs, hooks and
shafts, currently require numerous elements along the constant geometry direction in order to
provide good aspect ratios and to adequately capture stress gradients at critical sections. This
paper presents a method which can reduce the number of degrees of freedom required for such
structures while capturing stress gradients with equal or better resolution. This method has the
potential for exceptional computational efficiency. In addition, automatic mesh generation is
greatly simplified. Because the geometry of the structures being modelled is almost prismatic, it
is proposed to employ shape functions that are similar to a Fourier series of variable order in
the direction of constant geometry.

Similar two-dimensional methods which use Fourier series expansions in one direction
have been reported earlier.! ® Such approaches have been referred to in the literature as the
finite strip methods and have been applied mainly to plate problems.

A three-dimensional method using Fourier series expansions in one direction along which
material properties and geometry do not vary has also been reported.””? The main application
of this method, which has been referred to as the finite prism method, has been the analysis of
bridge support prisms and box structures. The finite prism method has been used primarily in
analysing prismatic structures constrained at either end. The main advantage cited for the method
is that the prismatic geometry and the orthogonality of the Fourier terms and their derivatives
cause the system stiffness matrix to become diagonal, thus reducing the effort required for
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solution. This also means that the number of harmonics used is not limited by the memory.

An advantage that is not explicitly stated”™® is that by letting the number of Fourier terms
at each node be different, a very easy method of controlling the number of degrees of freedom
per unit length along the constant geometry direction can be obtained. This would make it
much easier to generate a mesh containing varying size elements. Smaller elements could then
have nodes which use more Fourier terms than nodes of larger elements, and the mesh could
still be easily generated by a simple program.

In the formulation proposed here, a compromise has been struck between the inefficient meshes
that the conventional finite element method is forced to use and the restrictions that the finite
prism method imposes. The stiffness matrix is not diagonal as in the finite prism method.

For reasons of computational efficiency, it was decided to choose a series of functions other
than the Fourier series to approximate displacements. The method is generalized to allow either
free or fixed ends, and to allow several elements to be compatible so that they could be assembled
end to end. These new elements are also capable of being assembled with ordinary three
dimensional finite elements (such as the isoparametric serendipity element®).

In order to be able to model a geometry such as the teeth of helical and spiral bevel gears,
the nodal coordinates are also expanded as a series of variable order. The shape functions used
are based on an orthogonal set of functions so that it is easier to expand coordinates and forces
in terms of these shape functions.

For several reasons which are discussed below, a series of Chebyshev polynomials has been
chosen. It has been shown'® that the Chebyshev expansion is better behaved than any other
member of the family of ultraspherical expansions. This family includes most polynomials
frequently encountered which are orthogonal over the interval [ — 1, + 1]. The Legendre expansion,
Taylor series and an expansion in terms of Chebyshev polynomials of the second kind are also
members of this family. In this class of polynomials, Chebyshev polynomial expansions yield a
truncation error curve nearest to the desired equal-ripple form and yield expansions which
display the strongest possible convergence.'' One of the most important features!? of the
Chebyshev series is that, unlike the Fourier series, its convergence is not affected by the values
of the function being approximated at the boundaries of the interval [ -1, +1]. In contrast,
the Gibbs phenomenon shows that the rate of convergence of the Fourier series depends on the
value of the function and its derivatives at the boundaries. A term of a Chebyshev expansion
can be exactly computed with a finite number of multiplications, unlike terms of the sine and
cosine series. The Chebyshev polynomials are orthogonal and any integrable function can be
decomposed into a Chebyshev expansion. Chebyshev quadrature can be used to compute
coefficients. Finally, Chebyshev polynomials have been used with much success in fluid mechanics
problems. 314

Because of the nature of the element described in this paper, it will henceforth be referred to
as the ‘FQP’ (Finite Quasi-Prism) element. Table I summarizes the salient features of this method
in contrast to the conventional 3D finite element method and the finite prism method.

FORMULATION OF THE FINITE QUASI-PRISM (FQP) ELEMENT

(a) Interpolation scheme

The formulation of the FQP element is very similar to conventional finite elements, the
difference being in the shape functions used.
The coordinates are approximated by
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Table 1. Salient features of the FQP element compared to the
finite prism and the conventional 3D element

Finite
prism

3D finite
element

FQP
element

Limited to
prismatic
geometries

No limitation

Limited to
quasi-prismatic
geometries

Stiffness matrix
is diagonal

Not diagonal

Not diagonal

Number of
harmonics not
limited by memory

Number of terms in
expansion limited
by memory

Mesh creation is

Mesh creation is

Mesh creation is

very easy very difficult much easier than

3D FE
Ends of finite No such No such
prism have to be limitation limitation
fixed
Cannot be Can be combined
combined in the in the same mesh
same mesh with — with conventional
conventional finite elements
finite elements
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& T5(0)

where nc is the number of ‘axode’ curves per element (see Figure 1), and no (i) is the order of
the Chebyshev expansion at axode i. The displacements are interpolated in a very similar fashion:

u(&n, 0

o(&n,0) =

nc no(i)
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The orders of interpolation for displacements do not have to be the same as for co-ordinates,
but have been kept the same for reasons of programming convenience. The N;(&,n) are
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Figure 1. Mapping from local coordinates to global coordinates

two-dimensional Lagrangian shape functions for isoparametric elements with the number of
nodes capable of varying between three and nine.
The T;({) are shape functions derived from Chebyshev polynomials:

T(O)=0-0/2, TI()=01+072, T,()=1,() -1
L(O=1:0—-0 Tud=140) 1

()= {r,,({) —1 for n>1 and even
1,(0)—C for n>1 and odd
The 7,({) are Chebyshev polynomials defined by
=1 1@)=0 Q=201
13(0) =40 =30 1, () =8* -8 + 1
T5(0) = 16{°> — 2083 + 5¢

or,
Tn(c) = [(0") + t(]")é' 4+ tﬁ[")("
where
n—1
Y it n=0 k=0,..., [7]
and
21
1" =(— 1)k Zk (3)G); k=0,...,[n/2]
I=
where
n!
()=——— and [n/2] = the integral value of n/2
rt(n—r)!

(b) Properties of Chebyshev polynomials
Some properties of the Chebyshev polynomials are
T (+1)=+1

1,(—1)=+ 1 or — 1 depending on whether n is even or odd respectively.
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=
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Figure 2. Assembly of finite ‘quasi-prism elements with conventional finite elements

Hence,
To(—=1)=1, T,(—1)=0 forall n>0
T(+1)=1, T(+1)=0 for n=0 or n> 1
so that { = — 1 is a ‘node’ for the shape function T,, { = + 1 is a ‘node’ for the shape function

T, and the shape functions T, T, Ty, .. are nodeless and disappear at { = + 1. This property
makes it possible to assemble these elements end to end and if only a linear expansion is chosen,
these elements can be assembled alongside a linear finite element (see Figure 2).

1,(0) has n zeros, all between — 1 and 1. The jth zero of 7,() is

2j—1
C&")=COS<L]——17£> for j=1,2...,n
2n

The Chebyshev polynomials are a complete and orthogonal set with respect to the weight
function 1/(1 — {?)/? within the interval [ — 1, 1] such that

nifn=m=0

s

-yt

fn=m>0

[\

J“ 7,0 m(0)

0 otherwise

The roots of the Chebyshev polynomials can be used for quadrature

L) o .
J_ 1 mdc = ;}.Zl f(C§ )) for all fEPZ,,Al
Figure 3 shows plots of the shape functions T5(() to T5(0).

Along any one of the axode curves (¢, 1) = (S 11x) that describe an element,

nc no(i)

X&) = Z Z XijNi(ékvnk)Tj(C)

i=1j=0
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Figure 3. The shape functions based on Chebyshev polynomials

no(k)
= 2 Xk T5(0)
0

j:

Similarly,
no(k) no(k)
V(S M €) = 'Zo Vi T and  z(&,,n,,0) = 'Zo zi; T5(0)
j= j=

The x;;,y,; and z,; are nodal coordinates (or nodeless coordinates for k > 1) which have to be
determined while generating the FQP model. The property of orthogonality of Chebyshev
polynomials is of use at this stage. Let f({), — 1 <{ < + 1 be a function that is to be expanded
in terms of the shape functions T;(C) where j=0,1,2,...,n. Then,

AGSES '20 a;t;({) where ch=-<”_T’7'|'I12>w
U f0g(©)
{fig)>= fi (T:-é—z)-l—/idc
and
l Tj”2 =

72Z otherwise
The integral can be approximated by
Sop= | O 6T S ey
which is exact if feP,,_,_;. Thus
Y 10 ()

Since 1;(¢) and T;({) differ only by { or by 1 for j> 1,
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<.f5‘cj>

fi=aj=-— -, for j>1

Il
Substituting { = — 1 and + 1 respectively in (3),
fo=f(=1) and fy=f(+1)

(¢) Finite element formulation

Equation (2) can also be written in vector form as

nc no(i)
uGn 0= 3 2 wNd&n T

i=1j=

where
u=(u,v,w)" and wu;=(u;v;w;)"

In matrix notation these become

u=[N]{a} 4)
where

{a} = (ul 1> Uyo,onns ulno(l)’ u21° R unc,no(nc))T

The expression for strains is obtained by differentiating the displacements

(¢} = [LJu=[LI[N]{a} = [B]{a}

where [L] is the matrix differential operator® relating strains to displacements. The general finite
element equations may then be obtained in the usual manner, in this case using the Galerkin
form of the weighted residual method to get

Vv

J [B]T[D][B]dV{a}=J [NT'bdV

or
[K{aj={/}

where [ D] is the elasticity matrix, b is the applied load intensity vector, [ K] is the system stiffness
matrix and {f} is the system load vector.

Integration is carried out numerically by Gaussian quadrature using a 3 x 3 x ngpz rule, where
ngpz is the number of Gauss points in the { direction:

ngpz =1+ max (no (i) for each element

NUMERICAL EXAMPLES

A program implementing the FQP element was written to run on a VAX-11/750 in FORTRAN.
An in-core skyline solution program was used to solve the system of equations. It is intended
to implement an out-of-core solution routine in the future to enable the solution of larger
problems.

In order to demonstrate the FQP element, three example cases were chosen. The classic thick
cylinder problem was used because, by reducing the inner radius of the thick cylinder, severe
stress gradients can be created. In addition, the thick cylinder problem is essentially a
one-dimensional problem, in that no gradients exist in the circumferential and axial directions,
thus making possible a complete graphic presentation of the results. The second example, a
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curved beam problem, is used because an exact solution is available for comparison and because
there are two ways in which it can be modelled by the FQP element, thus giving the opportunity
for exploration of the performance of the element. Finally, as a third example, a turbing blade
stress analysis problem is considered since it is typical of the class of problems that the FQP
element is designed for.

(a) Thick cylinder subjected to internal pressure

Consider a thick cylinder having an internal radius, a, and an external radius, b (see
Figure 4). The exact solution to the thick cylinder problem is given by Spotts.'® The displacements
vary as 1/r and the stresses vary as 1/r? as the ratio a/b tends to zero. For this example, the
a/b ratio was chosen to be 0-1 so that sufficiently high stress gradients are created near the inner
radius. Poisson’s ratio, v, was chosen to be 0-3.

Figure 5 shows an FQP mesh that uses two elements. The { direction for both elements is
along the radius of the cylinder. Quadratic interpolation is used for both elements along the
circumferential direction and linear interpolation is used in the axial direction. Figure 6 shows
the displacements obtained with Chebyshev interpolation of orders one, three and six respectively,
along the { (radial) direction and Figures 7 and 8 show the corresponding stresses which were
calculated. The order 6 interpolation fits the exact displacements very well (with a maximum

y

e
k\ﬁ

Figure 4. Thick cylinder subjected to internal pressure

Figure 5. FQP mesh used for the thick cylinder
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error of 1-5 per cent of the maximum displacement). The order 1 interpolation fits the exact
curve about as well as can be expected for a straight line fit.

The calculated stress curves were found to intersect the exact stress curves very near the Gauss
points of the same order as the curve. For example, the order 1 hoop stress and radial stress
curves intersect the exact stress curves very near the order 1 Gauss point ({ = 0-0). The order 6
stress curves intersect the corresponding exact stress curves very near the six Gauss points of
order 6. The maximum error of the hoop stresses calculated at the Gauss points for the order 6
approximation was 1-324 per cent of the maximum hoop stress and for the radial stresses, the
maximum Gauss point error was 1-331 per cent of the maximum radial stress.

(b) Curved beam

For a thick curved beam in a state of plane stress loaded by shear on one end, as shown in
Figure 9, an exact solution is given by Timoshenko and Goodier.'®

Figures 10 and 11 show two FQP meshes used to model the curved beam. Figure 10 shows
a mesh consisting of two FQP elements, with their { directions along the radial direction of the
beam. A fourth order Chebyshev shape function interpolation was used in this direction. Each
element used quadratic interpolation along the circumferential direction and linear interpolation
along the z direction. The thickness of each element in the z direction was kept very small in
order to model plane stress properly. Figure 11 shows a second mesh consisting of two FQP
clements having their { directions along the circumferential direction of the curved beam. A
fourth order Chebyshev shape function interpolation is used in that direction. Figures 12, 13
and 14 show contours of displacement in the Y directions for meshes (a), (b) and for the exact
solution, respectively. Figures 15, 16 and 17 give contours of displacement in the X directions
for the same cases. Both meshes give smaller displacements than the exact solution. The
displacement contours of mesh (b) match almost exactly those of the exact solution and mesh
(a) is much stiffer that mesh (b). Figures 18, 19 and 20 show the respective contours of the von
Mises octahedral shear stresses from meshes (a), (b) and the exact solution. Because the shape
functions provide only C,, continuity of displacements. the stresses computed are not continuous

y

AN
(Upuy) = (0,0)

Figure 9. Curved beam loaded on one end by a shear stress
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Figure 10. Curved beam mesh (a)
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Figure 11. Curved beam mesh (b)
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Figure 12. Displacement u, contours in mesh (a)
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Figure 13. Displacement u, contours in mesh (b)
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Figure 14. Displacement u, contours from the exact solution
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Figure 15. Displacement u, contours in mesh (a)
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Figure 16. Displacement u, contours in mesh (b)
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Figure 17. Displacement u, contours from the exact solution
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Figure 18. Von Mises octahedral shear stress contours in mesh (a)
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Von Mises octahedral shear stress oyma/P

Figure 19. Von Mises octahedral shear stress contours in mesh (b)

Von Mises octahedral shear stress o,a/P

1

Figure 20. Von Mises octahedral shear stress contours from the exact solution

across element boundaries. Looking at these stress contours gives a clue as to why mesh (b)
gives more accurate results. The reason, as evidenced in the stress contour plots, is that mesh
(b) can conform more easily to the stress gradients in this particular problem than mesh (a).
This is despite the fact that both meshes have the same number (five) of ‘nodes’ (real or virtual)
in both the radial and circumferential directions. This shows clearly that there is a need for
more research into the behaviour of the FQP element.

(¢) Turbine blade model

Figure 21 shows a full three-dimensional model of a turbine blade and its root. The blade is
loaded by a uniform pressure P on its concave side. The boundaries of the ‘christmas tree’ root
are constrained from moving in any direction. The model has a total of 2340 degrees of freedom
and a bandwidth of 621. The { direction of the FQP elements is along the Y direction. The
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Figure 21. A turbine blade model using FQP elements

‘neck’ region where the blade joins the root is where the stresses are of most interest. Most of
the degrees of freedom (1569 out of 2340) are concentrated in this region. Chebyshev shape
functions of order 10 are used in this region, as compared to orders 3 and 6 elsewhere. Had
conventional finite elements been used, the transition from 11 nodes in the Y direction at the
neck to 4 nodes along the Y direction at the tip of the blade and at the bottom of the root would
have immensely complicated mesh generation and would have used more degrees of freedom.
Figures 22(a) to 22(c) show contours of constant octahedral shear stress at three selected sections
of the elements at the neck of this model. It should be noted that the stresses are discontinuous
at the interelement boundaries and that these discontinuities have been preserved in the contour
plots to show the actual behaviour of the FQP clements.

CONCLUSIONS

This paper has shown that the FQP element can be a very efficient and accurate alternative to
conventional finite elements and offers a definite advantage over finite elements for a whole class
of problems. The authors are convinced of the practicality of these elements and of their potential
for computational savings. A detailed comparison between the FQP elements and conventional
3D finite elements needs to be carried out to show that using a ‘theoretically best” basis of shape
functions gives more accurate results than conventionally used shape functions. Since these
elements can be made to interface with normal finite elements, they can be used to advantage,
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Figure 22. Contours of von Mises octahedral stress a,,,/P at selected sections within the turbine blade model



ANALYSIS OF QUASI-PRISMATIC BODIES 1477

even if only used in portions of the model. Much of the development, remarks and conclusions
would apply also to heat conduction and similar field problems.

Finally, there is a need for theoretical error and convergence rate estimates. Such estimates

should help in deciding a-priori how many terms are needed in FQP models.
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