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SUMMARY 
A method is described to determine contact stresses and deformation using a combination of the finite 
element method and a surface integral form of the Bousinesq solution. Numerical examples of contacting 
hypoid gears are presented. 

INTRODUCTION 

In earlier studies', 29  ' ' 7  l 1  a pure finite element approach was used to obtain compliance terms 
relating traction at one location to the normal displacement at another location. It became 
apparent that, in order to obtain sufficient resolution in the contact area, the size of the finite 
element model would have to be inordinately large. A finite element mesh that is locally refined 
around the contact region cannot be used when the contact zone travels over the surfaces of the 
two bodies. 

Other researchers working in the tribology area3. '* ' have obtained compliance relationships 
by integrating the Green's function for a point load on the surface of a half space (the Bousinesq 
solution) over the areas of individual cells demarcated on the contact zone. This method works 
well as long as the extent of the contacting bodies is much larger than the dimensions of the 
contact zone, and the contact zone is far enough from the other surface boundaries so that the 
two contacting bodies may be treated as elastic half spaces. These conditions are, however, not 
satisfied by the bodies being considered here. 

The approach that is described here is based on the assumption that, beyond a certain distance 
away from the contact zone, the finite element model predicts deformations well. The elastic half 
space model is accurate in predicting relative displacements of points near the contact zone. 
Under these assumptions, it is possible to make predictions of surface displacements that make 
use of the advantages of both the finite element method and the surface integral approach. 

This method is related to asymptotic matching methods that are commonly used to solve 
singular perturbation problems. Schwartz and Harper* have used such an asymptotic matching 
method to determine the relative approach of two rigid cylinders pressed against an elastic 
cylinder in plane strain. This method also bears resemblance to some classical approaches.' 2 * 1  

In order to combine the surface integral solution with the finite element solution, a reference or 
'matching' interface embedded in the contacting body is used. This matching surface is far enough 
removed from the principal point of contact so that the finite element prediction of displacements 
along this surface is accurate enough. At the same time, it is close enough to the principal point of 
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contact so that the effect of the finite extent of the body does not significantly affect the relative 
displacements of points on this surface with respect to points in the region of contact. 

This paper describes the analysis of the contact problem, and some numerical results obtained 
for a set of hypoid gears. Some contact stress contour diagrams, contact patterns and transmis- 
sion error predictions are shown. 

PRELIMINARIES 

Contact analysis is carried out in several steps. The first step is to locate a set of ‘primary contact 
points’, which are points at which the individual contacting surfaces are closest to each other 
before the application of load. The next step is to calculate the principal normal curvatures of the 
individual surfaces, and the unit vectors along the tangents to these surfaces in the directions of 
maximum and minimum principal normal curvature. Then the relative curvature between the 
two surfaces is determined, and the unit vectors along the directions of maximum and minimum 
principal normal relative curvatures are calculated. The next step is to estimate the size of the 
contact zone. This is done by using Hertz’s model for contact. Using this rough estimate of the 
contact zone, a grid is laid out around each principal contact point (Figure 1). Then cross 
compliance terms between the various grid points are calculated using a combination of a surface 
integral form of the Bousinesq and the finite element model of the contacting bodies. Finally, load 
distributions and rigid body movements are calculated using the algorithm based on the Simplex 
method.” 

(a) Locating the primary contact points 

The surface of each of the contacting bodies is broken into separate parts, each of which is 
likely to make contact with a part of the other body. In the case of gears, each such part is the 
surface ofjust one side of one gear tooth. Each of these is searched for a ‘principal contact point’. 
This point is where the two surface patches 

r l (s l ,  t l )  and r2(s2, t , )  - 1 d t , ,  t ,  < + 1, 0 < s1 < n , ,  0 < s, < n, (1) 
come the closest to each other. 

In other words, the distance ~ ~ r , ( s , ,  t l )  - rz(s2, t 2 )  11 between the two surfaces is extremized 
with respect to the four variables sl, t , ,  s2, t , .  This search can be carried out by the method of 

I- 
\ subsurface grid glij 

field point 

Figure 1 .  The contacting bodies and the computational grids 
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steepest descent for the four variables. A special purpose finite element was used to numerically 
represent these surfaces by C' continuous (smooth) functions. But even so, using the method of 
steepest descent was ridden with convergence problems. It was too sensitive to numerical error. 
Another method is to exhaustively search the set spanned by these four variables. This method is 
too time consuming. A combination of the two methods was found to work the best. The space 
(sl, t l )  was broken into a grid of points (sli, tlj) which corresponds to a grid rlij  = rl(sli ,  tIj) 
drawn on the surface r l .  For each of these grid points, an attempt was made to locate 
rZij = r2(s2i, t2j) that minimized 

with respect to the variables s2, t , .  This extremization is equivalent to solving the following pair 
of non-linear equations: 

and 

This system of non-linear equations was solved by the Newton-Raphson method to obtain rzij 
for each of the grid points rlij. A new grid was set up around that point rlij for which the 
separation 11 rlij  - r2ijII was the smallest. This new grid was finer than the original grid. This 
process was repeated several times with progressively smaller grids to locate the principal contact 
point. 

(b) Calculating the principal curvatures and unit vectors 

define the matrices 
In order to determine the principal normal curvatures and directions of a surface r(s, t) at  (s, t), 

L J 

d2r a2r 

n*-  n - -  
atas 

where n is the unit normal vector, 
ar ar 
as at  
- x -  

n = __- (4) 

the matrix [ A ]  is the metric tensor for the surface and the matrix [ B ]  contains the normal 
curvature and twist values along the s and t directions. 
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If K ( * )  and K ( ~ )  are the two eigenvalues of the eigenproblem: 

C B l ( 4  = K C A l ( 4  
where 

(4 = {;I} 2 

then ~ ( l )  and d2) are the principal normal curvature values, and if the two corresponding 
eigenvectors { I ? ) )  and are normalized by 

{ P } T [ A ]  {P)} = 1 
and (6) 

( P ’ } T [ A ]  {A@)} = 1 

then the unit vectors in the principal directions corresponding to the principal curvatures are 

and (7) 

respectively. (The boldface symbols ti1) and ti2) should not be confused with the symbol t ,  which is 
one of the parameters defining the surface.) 

(c) Determining the relative principal curvature and directions 

Let K \ ~ ) ,  K\”, ti’), ti2) be the two principal curvatures and two corresponding principal 
directions of surface no. 1 at a principal contact point r l (s l ,  t l )  and let K\’), I C ( , ~ ) ,  ti1), ty) be the two 
principal curvatures and two principal directions of surface no. 2 at r2(sz, t 2 ) .  Let 19 be the angle 
between ti1) and ti’), defined as follows (Figure 2): 

Let K ( ’ )  and K(’)  be the two principal normal relative curvatures and let dl) and d2) be the unit 
vectors in the directions corresponding to these principal relative curvatures. Let CD be the angle 

Figure 2. Directions of principal normal curvature 
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between d’) and ti”. Then 

E(“’ + K‘2’ = (4) + ti\2’) + (Ky) + ti\2’) 

~ ( 1 )  - ~ ( 2 ’  = (K\1) - K~2))cos(2~~)  + ( t i y )  - ti52))cos(2(~ - e)) (10) 

These equations yield the values of K“) and K‘”. The two directions for the principal normal 
relative curvatures are correspondingly 

dl) = t\l)cos@ + ti2)sin@ 
(1 1) 

= - ti1) sin @ + ti2)cos @ 

( d )  Estimating the dimensions of the contact zone 

After the relative curvatures have been obtained near the principal contact point, a rough 
estimate of the size of the contact zone can be obtained using Hertz’s theory. Hertz’s theory 
predicts an elliptic contact zone of a certain size. In general, the contact zone will not be an ellipse, 
and its size will be different from that predicted by Hertz’s theory due to the fact that curvatures 
are not constant over the contact zone, and because the bodies are not elastic half spaces. 
Furthermore, the point of maximum contact pressure will not coincide with the principal contact 
point owing to the gross deformations of these bodies. Let F be the maximum possible normal 
force that is expected to fall on the contact zone around a principal contact point at rl(s l ,  t l )  and 
rz(sz, t 2 ) .  This value is obtained by assuming that all the load is borne by only one principal 
contact point and then using the condition of static equilibrium. The approximate dimensions of 
the contact ellipse for the load F are given by the lengths of the semi major and minor axes a and 
b, respectively: 

b = n  (3n - F ( k ,  + k 2 ) ) l i 3  
4 ( A + B )  

where 
1 - v I  

X E l  

1 - v: 
nE2 

k 1 = -  

k 2  = ~ 

are constants depending on material properties; A and B are determined by 

( A  + B)  = 0.51K‘’’ + K‘”1 

(B  - A )  = 0.5(K‘2’  - K “ ) (  

and the constants m and n are available in tabulated form4 as functions of Y ,  where 

cos Y = ( B  - A ) / ( A  + B )  (1 5 )  
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(e) Laying out the computational grids 

out on both the surfaces. 
After lengths of the semi-axes of the contact ellipse have been determined, a grid of points is laid 

A grid of points plij  is set up near rl(s l ,  t l )  on surface no. 1 as follows: 

plij  = r l  + [ ( ia /n ( ' ) )d l )  + ( j h / d 2 ) ) d 2 ) ] y  (16) 

where 
- n(l)  < i < n(') 

and 
- n(2) < j  < 

Here a and b are the estimated lengths of the ellipse semi-axes, n ( l )  and n(') control the number of 
grid points and y is a factor, usually about 1.4, required to make the grid larger than the contact 
ellipse size. The grid has to be made larger than the Hertzian contact ellipse to accomodate 
contact ellipses that are displaced from the principal contact point, and to allow for the fact that 
the actual contact zone might not be an ellipse of the predicted size. As long as the contact zone 
lies completely within this computational grid, the computed contact pressures are not very 
sensitive to the size of the grid. The grid must be made as small as possible, however, in order to 
achieve maximum resolution. The value of y has to be modified if the contact zone is found to be 
truncated by the computational grid, or if the contact zone is found to be much smaller than the 
grid. 

These points plij will lie in a plane tangent to surface no. 1, as shown in Figure 1. Correspond- 
ing to each point plij, a grid point rl i j  is found on surface no. 1 which is closest to plij .  This is done 
by minimizing ( 1  plij  - r l (s l ,  t l )  11'. This is equivalent to solving the following pair of non-linear 
equations: 

for (slij, t l i j )  = (s,, tl) .  The solution yields rlij  = rl(slij, t l i j ) .  
Similarly, a grid of points pzij is set up on the tangent plane to surface no. 2 at rz(sz, t2):  

pzij = r2 + [ ( iu /n( ' ) )d ' )  + ( jb/n(') )d')] j~ (18) 

and the non-linear pair of equations: 

MATCHING SURFACE INTEGRAL AND FINITE ELEMENT SOLUTIONS 

Let u(p; q) denote the displacement vector at the location q due to a unit normal compressive 
force applied at the location p which is on the surface. The superscripts (si) and (fe) on a term will 
mean that the term has been calculated using surface integral formulae and a finite element 
model, respectively. Subscripts 1 and 2 will denote body no. 1 and body no. 2, respectively. When 
this subscript is omitted in an equation, the equation will be understood to apply to both the 
bodies. 
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Let u(p; q) = - u(p; q).n be the inward normal component of the displacement vector u(p; q), 

The displacement u(rij; r) of a field point r due to a load at the surface grid point rij can be 
where n is the outward unit normal vector at the principal contact point. 

expressed as 

u(rij; r) = (u(rij; r) - u(rij; 9)) + u(rij; q) (20) 
where q is some location in the interior of the body, sufficiently removed from the surface 
(Figure 3). If the first two terms are evaluated using the surface integral formulae and the third 
term is computed from the finite element model, then we obtain the displacement estimate: 

u(rij; r)(q) = (dSi)(rij; r) - dSi)(rij; q)) + dfe)(rij; q) (21) 

The term in parentheses is the deflection of r with respect to the ‘reference point’ q. This relative 
component is better estimated by a local deformation field based on the Bousinesq half space 
solution than by the finite element model. The gross deformation of the body due to the fact that 
it is not a half space will not significantly affect this term. On the contrary, the remaining term 
dfe)(rij; q) is not significantly affected by local stresses at the surface. This is because q is chosen to 
be far enough beneath the surface. This term is therefore best computed using a finite element 
model of the body. The value u(rij; r)(q) thus computed will, in general, depend on the location 
q because of the different values of the surface integral and finite element displacement fields there. 
The location is a so-called reference or ‘matching’ point. We would like to match the surface 
integral and finite element solutions not only at  one point, but at a set of points belonging to 
a ‘matching interface’ (Figure 3). We will then be interested in that value for u(rij; r) which will 
minimize the least squares deviation: 

[u(rij; r) - (dSi)(rij; r) - dSi)(rij; q) + dfe)(rij; q)]’dT 

where q varies over the reference surface r. 
u(rij; r) which minimizes 

q e r  

Another possibility, which lends itself better to spatial discretization, is to choose a value for 

C [u(rij; r) - (dSi)(rij; r) - dSi)(rij; q) + dfe)(rij; q))]’ (23) 

where q varies over a grid of points qij laid out over the matching interface r (Figure 1). For 
programming convenience, points in this grid qij were chosen to lie half a finite element thickness 
below corresponding points in the surface grid rij (Figure 4). It remains to be determined how 
sensitive the final results are to this choice. Let N be the total number of points in the grid qij. 

matching interface 

Figure 3. The matching interface 
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\ I 

Figure 4. The sub-surface grid qii 

Then the value that minimizes the least square deviation above is 

(24) 
1 

u(rij; r) = dSi)(rij; r) + - 1 [dre)(rij; qus) - dSi)(rij; qas)I 

In order to obtain sufficient resolution of the contact stresses, the number of points in the grid rij 
will have to be very large, typically in the hundreds. Computation of all the terms of the type 
dfe)(rij; qas) would involve hundreds of backsubstitutions. This would be prohibitively time 
consuming because of the complexity of the three-dimensional finite element model of the body. 
Furthermore, the finite element model cannot typically have an adequate degree of freedom at the 
surface to allow each of the terms dfe)(rij;  qas)  to be independent of each other. Thus, evaluating 
each such term by a separate backsubstitution is probably also superfluous. A better method is to 
obtain dfe)(c(k)j(k);  qi(r)i(,)) for a much smaller subset { b ( k ) i ( k ) ;  k = 1, 2, . . . , M} of the grid {rij} as 
shown in Figure 5 and the corresponding subset (qi(k)j(k); k = 1,2, . . . , Mf of the grid {qij). If 
the number of points M in this restricted set of grid points is small, then all the terms 
u(fe)(ri(k)i(k); q;cl)i(l,) can be computed using only a small number M of backsubstitutions. 

In the numerical examples to follow, M was 9, and these points were chosen from the grid as 
shown in Figure 5. The values of dfe)(rij; qEa) for the complete set of grid points can be obtained 
by using two-dimensional interpolants set up on the surface grid rij and the subsurface grid qij, by 
the interpolation method: 

q., 

where the functions Nk(i ,  j )  are biquadratic functions of i and j :  

Nk(irj) = 1 aka8iajfi 
a, @=O, 1.2 

The coefficients akaS are chosen such that 

N k ( i ( l ) ,  i ( j ) )  = 6 k ,  (27) 

where a,, is the Kronecker delta. 
The finite element formulation that was used to evaluate the terms u(fe)(ri(k)i(k); qi(l,j([)) has been 

discussed in considerable detail in earlier papers,”, but a brief description has been included in 
the Appendix for convenience. 

The computation of the surface integral terms dSi)(rij; qaS) and dSi)(rij; r) follows the methodo- 
logy widely used in the tribology literature. If the point r lies on the surface of the body, then 
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Figure 5. The computational grid ri, 

define 

to be the distance from rij to r along the principal axes d' )  and &*), respectively, let 

and 

z = - (rij - r).n 

AX = y(a/n")) 

Ay = y(b /d2) )  

be the dimensions of each surface grid cell. The normal force F applied at  rij is assumed to be 
evenly distributed over an area AxAy centred around r i j .  The response to this distributed force 
can be obtained by integrating the Green's function (which is the Bousinesq solution). The result 
for z = 0, after integration is3* 

x = I"' + Ax12 y = 1'2' + Ay/2 

&Q(rij; r) = 2xGAxAy [ (ysinh-'(lfl) + x s i n h - 1 ( ~ ) ) x = I " ' - A r : 2 1 y =  1(2)-,3y/2 (31) 

If the point r is far enough below the surface, we can use the Bousinesq solution without 
integrating to obtain 

F 
2xEd 

dSi)(rij; r) = ~ [(I + v)z2(z2 + d 2 ) - 3 / 2  + 2(1 - vz)(z2 + d 2 ) - ' / 2 ]  (32) 

where d = I)(rij - r) - znII. 
The method described above is used to calculate all the terms ul(rlij; r lkl)  and u2(rZij; rZk,) to 

build a compliance matrix. The contact force distribution over the grid and rigid body motions is 
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determined by setting up the contact equations using this compliance matrix and solving these 
contact equations hy any of the numerous methods available in the literature. In the numerical 
examples described below, a method based on the Simplex algorithm of linear programming was 
used. Readers are referred to Vijayakar" for more details. 

pinion. 

gear 

Figure 6. A six-tooth finite element model of the gear and 
the pinion 

Figure 7. The three-tooth finite element model of the 
gear showing the active surfaces 

Figure 8. The locus of the contact zone as the gears roll against each other for a gear torque of 240 in-lb 
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NUMERICAL EXAMPLE 

The case chosen as a numerical example is that of contacting hypoid gears. The surfaces of the 
teeth of these gears are created by a complicated cutting process. The cutting machines used have 
many kinematic settings. The settings are chosen such that the contact zone remains in the centre 
of the tooth surfaces as the gears roll against each other. A heuristic procedure is available to 
select the settings, but, in practice, these settings have to be selected after a tedious iterative 
process involving cutting and experimentally testing actual gears. Even so, it is very difficult to 
predict the actual contact stresses, fatigue life, kinematic errors and other design criteria, 
especially when not installed in ideal conditions. The contact stresses are so sensitive to the actual 
surface profile that conventional 3-D contact analysis is not feasible. 

A sample 90" hypoid gear set from the rear axle of a commercial vehicle was selected. The gear 
ratio of this set was 41: 11 and the axial offset was 1-5 in. The gear surfaces had been experi- 
mentally shown to be ideal for this particular gear ratio and axial offset. In other words, the 
contact zone was found to remain in the central portion of the gear teeth in the operational torque 
range. The object of this numerical study is to verify this by looking at the manner in which the 
contact pattern shifts when the gears are moved around from their ideal locations. Kinematic 
errors were also calculated. 

The model was constructed by first generating values of co-ordinate normal vectors for points 
on the surface by simulating the cutting machines. The finite element description of the surface 

Figure 9. The locus of the contact zone as the gears roll 
against each other for a gear torque of 480 in-lb 

Figure 10. The locus of the contact zone as the gears roll 
against each other for a gear torque of 960 in-lb 
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was then created by fitting tenth order truncated Chebyshev series approximations to these data. 
The interior portions of the finite element were created semi-automatically. Only a sector 
containing three teeth of each gear was modelled, with each tooth being identical. The gear (gear 
no. 1) and the pinion (gear no. 2, the smaller gear) were then oriented in space as per the assembly 
drawings, and the analysis was carried out for each individual time step. Figure 6 shows 
a six-tooth gear and pinion model. Sectoral symmetry is  used to generate stiffness matrices from 
the stiffness matrix of one tooth. For this particular gear set, a three-tooth model suffices because 
at the most two teeth contact at a time. Figure 7 shows the surfaces of the three-tooth gear. 
Figures 8 ,9  and 10 show the contact pattern (which is the locus of the contact zone as the gears 
roll against each other) for a gear torque of 240,480 and 960 in-lb, respectively. Figures 11 and 13 
show views of the contact zone with contact pressure contours on the gear for two particular 
angular positions. Figures 12 and 14 show magnified views of the contact zone for these two 
positions. They show contours of normal contact pressures on the surfaces. Computational grids 
of 11 x 25 cells were used on these surfaces to obtain the pressure distributions. Another useful 
piece of information that can be obtained is the kinematic transmission error, which is the 
deviation of the motion of the gears from their ideal angular motion. Figure 15 shows the 
transmission error in radians for three different torque levels (0, 480 and 960in-lb). These 

Figure 1 1 .  Contact stress contours for position 1 
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Figure 12. Contact stress contours for position 1 
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Figure 13. Contact stress contours for position 2 
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Figure 14. Contact stress contours for position 2 
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Figure 15. The transmission error curves obtained for 960.480 and 0 in-lb of torque applied to the gear 

in in 

Figure 16. The effect of an X translation on the contact pattern 



Figure 17. The e k t  of an Y translation on the contact pattern 

Figure 18. The effect of a Z translation on the contact pattern 
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Figure 19. The effect of an X rotation on the contact pattern 

transmission error curves are remarkably similar to those measured experimentally by other 
 researcher^.^ Finally, the position of the pinion was perturbed slightly from the design location, 
and Figures 16 to 19 show the contact patterns that were obtained. When compared to the 
contact pattern for the unperturbed position in Figure 7, it shows that the best contact pattern 
does indeed occur at the designed position, lending credence to the notion that an analysis of the 
kind described in this paper has the potential to be used in the design process itself. 

CONCLUSIONS 

Using a combination of finite element and surface integral methods seems to be, in the author's 
opinion, the most practical method of modelling stiffness behaviour of contacting bodies. Used 
along with an efficient algorithm for solving contact equations, one can predict contact stress 
distributions and deformations in more realistic detail than otherwise possible. 

Experimental data are not available at the present time for comparison and verification, owing 
to the difficulties of measuring contact pressures over very small areas. Future efforts will be 
directed towards experimentally estimating the accuracy of the method, and the development of 
a rational strategy to determine parameters like the optimal depth of the matching interface. An 
effort will be made to incorporate some of the more elaborate elastohydrodynamic contact 
models that exist.' 
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APPENDIX 

Finite element representation of the contacting bodies 

The displacements ue((, q, () and co-ordinates xe((, q, [) are approximated within an element 
bv 

where e is the element index, 9 and me are the numbers of conventional two-dimensional shape 
functions Gi((, q )  and Ni(5, q )  within the two-dimensional domain t, E [ - 1, + 13 of the 
element used to represent the displacements and co-ordinates, respectively. cj([)  and Ti((') are 
the first few members of a complete set of functions defined in [ E [ - 1, + 1). 

The two-dimensional shape functions f i i (  4 ,  q )  used for displacements are conventional shape 
functions. In this study, they were quadratic isoparametric shape functions corresponding to an 
element with between four and nine nodes. 

For co-ordinate interpolation, two different kinds of elements were used, depending on whether 
or not part of the element's surface was along the active contacting surface of the body. For 
interior elements, the shape functions N i ( t ,  q )  used were those of a four noded linear two- 
dimensional finite element. For elements that share part of the contacting surface, a special 
element (Figure 20) formulation was used that allows for a C, continuous representation of the 
surface and accuracies within the prescribed surface tolerances. 

Figure 20. The two-dimensional element used for co-ordinate representation at the surface 
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and let 

H ~ ( s )  = (s3 - 3s + 2)/4 

H ~ ( s )  = ( - s3 + 3s + 2)/4 

H3(s)  = ( s3  - S' - s + 1)/4 

H4(s) = (s3 + S' - s + 1)/4 

Here H , ( s ) ,  H2(s) ,  H , ( s )  and H4(s) are the Hermite cubic shape functions used in beam elements 
that allow C ,  continuous one-dimensional interpolation. Figure 1 shows the two-dimensional 
element that uses the following 24 shape functions defined for 5,  ?E[ - 1, + I]: 

w5, v )  =f i (OA(v )  
%(5? ?) =fi(<lfi(?) 

where 

where 
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where 
S s ( 5 )  = 2(r  - 0.4)/0.2 - 1.0 

and so on, until 

where 

s1(5) = 2(5 + 1-0)/0*2 - 1-0 

The functions zj(5) and zj(5) were based on the Chebyshev polynomials: 

[ (1 - 5)/2 for j = 0 

(1 + [)/2 for j = 0 

tn(c) - 1 if n > 1 and n is odd 
Z n ( O  = En([) = 

\ tn(() - 5 if n > 1 n  and is even 
where T,([) is the Chebyshev polynomial of order n defined on the interval [ - 1, + 11. 
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