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Abstract 
In this study, a nonlinear finite element contact mechanics 

model of a parallel axis gear pair is employed to study the 
impact of intentional tooth flank modifications on the static 
motion transmission error of the gear pair.  An experimental 
study is performed for the validation of the model predictions.  
The validated model is then employed to investigate the impact 
of both two-dimensional (2D) and three-dimensional (3D) tooth 
flank modifications on the transmission error excitation.  In 
case of 2D modifications, a parameter set that includes the 
magnitude, extent, and type (linear or quadratic) of involute tip 
modifications and lead crown is considered.  For 3D 
modifications, parameters defining both “bias-in” and “bias-
out” type of modifications are included.  The combined 
influence of modification parameters and load transmitted on 
the resultant transmission error excitation is quantified. 

 
Nomenclature 
a  Magnitude of 2D tip of root modification 

iA  i-th gear mesh harmonic component of )(tε  
b Magnitude of 3D modification 
h Magnitude of 2D lead modification 
P Modification parameter set 
q Position vector of a reference point on the matching 

interface  
r Gear radius 
r Position vector of a surface point 
t Time 
_________________________________________________ 
(*) Currently with M&M Precision Systems Corp, Dayton, OH.

T Torque transmitted 
dT  Design torque 

u Inward normal component of the displacement vector 
α  Starting roll angle of a 2D profile modification 
β  Starting roll angle of a 3D modification in profile 

direction 
)(tε  Static transmission error 

λ  Length of a 3D modification in lead direction 
θ  Gear rotation angle   
Ω  Nominal angular velocity  

 

Superscripts: 
fe Finite element  
i Gear index ( gpi ,= )  
g Gear 
p Pinion 
si Surface integral 
 

Subscripts: 
a  Alternating component 
d Deflection component 
f Geometric deviation component 
 
1  Introduction 

Dynamic modeling of gear pairs has attracted large number 
of investigators over last 40 years [1].  Any attempt in reducing 
noise generated by a gear pair and in improving the durability 
of the system requires a sound understanding of the behavior of 
the system under dynamic conditions. A dynamic model with 
all essential features of the actual physical system is required 
for this purpose.   This way, not only the vibratory behavior of 
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a gear pair leading to gear noise and dynamic stressses can be 
described, but also the key parameters can be identified and 
optimized for the most favorable gear dynamics behavior.   

Several recent published studies on gear dynamics [2-11] 
point out that a gear pair behaves as a non-linear, time-varying 
system with a rather complex excitation mechanism formed by 
a number of parametric, internal and external excitations.   
Considering a gear pair formed by gears p (driving) and g 
(driven), three types of excitations were reported to exist [4].  
The first one is a parametric excitation due to the periodically 
time-varying gear mesh stiffness.   It has been shown 
experimentally [6, 12] and analytically [11] that the amount of 
fluctuation of the mesh stiffness about its average value is 
dictated by the contact ratio (a gear pair design parameter 
representing average number of tooth pairs in contact).  For 
spur gear pairs, any integer valued contact ratio, say one or two, 
eliminates largely this parametric excitation reducing overall 
vibration amplitudes and avoiding the parametric instability 
regions completely [6].  Secondly, an external excitation is 
present mainly due to low-frequency torque fluctuations 
originated by the prime mover, (engine, turbine, etc.) asserting 
very limited influence on the gear whine while it can be critical 
for rattling of unloaded gear pairs.  Finally, the third type of 
excitation )(tε  is an internal displacement excitation applied at 
the gear mesh between the teeth in order to represent deviations 
from the perfect involute profile due to manufacturing errors 
and/or intentional modifications, and quasi-static tooth 
deflections. It is also known as the loaded static transmission 
error.  In lumped mass dynamic models, )(tε  was introduced 
as a displacement excitation at the gear mesh interface while 
deformable body dynamic models include )(tε  implicitly [11].  
In either case, reducing )(tε  was shown to have the positive 
impact in the dynamic response of a spur gear pair resulting in 
reduced gear whine.   

The rotational angle of gear-i ( gpi ,= ) )(tiθ  can be 
written as the sum of a nominal rotation angle tiΩ  and an 
alternating component )(ti

aθ  where t represents the real time 
and iΩ  is the mean rotational velocity, i.e. )()( ttt i

a
ii θθ +Ω= .  

Static transmission error along the line of action is then defined 
mathematically as 

 
 )()()( trtrt g

a
gp

a
p θθε += .  (1) 

 
where pr  and gr  are the base circle radii. In physical 
terms, )(tε  has two components, a geometric deviation 
component )(tfε  representing the unavoidable tooth flank 
manufacturing errors or intentional modifications and a 
component representing the quasi-static tooth deflections )(tdε   

 
 )()()( ttt df εεε += . (2) 
 

Under no load, the transmission error is formed solely by the 
geometric deviation component.  Hence, a perfect involute gear 
pair under no load would have a zero transmission error.  On 
the other hand, gear teeth in contact interface will deflect under 
load resulting in a certain )(tdε  even if the gears are perfect.  

For the most general case, gears have manufacturing errors and 
must carry a certain amount of load.  Therefore, both 
components of )(tε  in eq. (2) are equally relevant in real life 
powertrain gearing applications. 

One commonly practiced idea has been to introduce a 
geometric deviation component )(tfε  that is equal to )(tdε  in 
magnitude but opposite in deflection, )()( tt df εε −≈  so that 

0)( ≈tε  eliminating the transmission error excitation all 
together.  This is done by modifying a gear tooth profile by 
introducing intentional deviations from a pure involute tooth 
flank surface through the final manufacturing process.  This 
often amounts to removal of additional material from the tooth 
surface beyond the perfect involute profile.  In eq. (2), )(tfε  
includes modifications as well as other manufacturing errors.  
While their primary function is to reduce )(tε , these tooth 
surface modifications also help in smoothening the entry and 
exit of a gear tooth to and from the meshing zone, and in 
compensating for mounting errors and deflections of the 
support structures such as shaft misalignments and shaft, 
bearing and case deflections. 

Two types of involute tooth flank modifications have been 
in use for spur and helical gears.  The first type is a two 
dimensional modification where the tooth flank is modified in 
involute (root to tip) and lead (side to side) directions 
independently.  In involute direction, the profile defined by the 
perfect involute curve is altered by removing material at the tip 
(tip modification or tip relief) and/or root (root modification or 
root relief) as defined in Fig. 1(a).  The magnitude at the tip ta  
and the gear roll angle at the start of the tip relief tα  define the 
boundaries of the tip relief.  Between these two points the 
profile typically follows a linear or quadratic trajectory.  
Similarly, the magnitude ra  and the starting roll angle rα  
define the limits of a linear or quadratic root modification.  2D 
modifications in lead direction are typically given in the form 
of a “lead crown” that is tangent to the purely involute surface 
in the mid-plane of the gear and varies symmetrically in a 
quadratic manner in both directions reaching a magnitude of h 
at both sides of the gear tooth as shown in Fig. 1(a).  Hence, a 
five parameter set i

DP2  defines 2D modifications of a gear i 
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D haaP αα∈  (3)

 
resulting in a 10 parameter set g

D
p
DD PPP 222 ∪∈  for a pair 

formed by gears p and g.  As seen in Fig. 1(a), profile 
modifications (tip and root relief) remain unchanged in the lead 
direction.  Similarly, the modified shape in lead direction does 
not change in the involute direction.  A close look at the 
directionality of typical contact lines of a spur gear pair should 
reveal that the lead crown of 2D modifications is applied in a 
direction parallel to the contact lines, and the profile 
modifications are perpendicular to the contact lines.  Hence, the 
lead modifications here have the sole duty of preventing 
excessive loading near the faces of gears due to potential shaft 
misalignments while the profile modifications are devoted to 
controlling loaded transmission error excitation )(tε  of a spur 
gear pair.  It was shown in previous experimental and 
theoretical investigations that such modifications could be 
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designed to minimize )(tε  of a spur gear pair at given design 
load [5,9,13,14]. 

In case of a helical gear pair, the contact lines are skewed 
by a certain amount due to the helix angle.  Therefore, neither 
lead nor involute corrections of 2D modifications lines up with 
the contact lines of a helical gear pair.  A given lead or involute 
modification now has a more complex and potentially less 
effective influence on the transmission error.  Arguing that 2D 
modifications are not optimum for helical gears, a number of 
investigators proposed another class of modifications 
exclusively for helical gears [15-18].  Such three-dimensional 
(3D) modifications are illustrated in Fig. 1(b).  Here, again the 
modifications are applied by removing material from the 
perfect involute profile.  As evident from Fig. 1(b), 3D 
modifications can be designed to align with the contact lines of 
the helical gear.   In each corner, a modification starts from a 
line joining two points at a roll angle β  and a lead position λ .  
It varies linearly or quadratically as it reaches to a magnitude b 
in the corner.  The modifications parallel to the contact line are 
often called as bias-in (modifications in corners 1 and 3 in Fig. 
1(b)) and the modifications that are somewhat perpendicular to 
the contact line are often called as bias-out (corners 2 and 4) in 
gear terminology.  The parameter set that defines the 3D 
modifications of gear i is given as 
 
 },,,,,,,,,,,{ 4443332221113

iiiiiiiiiiiii
D bbbbP λβλβλβλβ∈  (4) 

 
resulting in a 24 parameter set g

D
p
DD PPP 333 ∪∈  for a pair 

formed by gears p and g. 
 

1.2  Objectives and Scope 
Although both 2D and 3D modifications (especially the 2D 

ones) have been used extensively in real-life gear applications, 
the results have been often mixed mainly since the 
determination of the modification parameters were based on 
simplified estimates, trial-and-error or past field experiences.  
Although, tooth surface modifications can be very beneficial in 
reducing gear vibration excitation, their improper use can make 
the things even worse.   One main objective of this study is to 
propose a contact mechanics model of a spur or helical gear 
pair for an accurate prediction of loaded transmission error.  An 
experimental study will be outlined for measurement of loaded 
transmission error under quasi-static conditions.  The model 
predictions will be validated through a comparison to the 
experimental data.  The model will be used to systematically 
investigate the sensitivity of each parameter defining both 2D 
and 3D modifications on the Fourier harmonics of the loaded 
transmission error of a helical gear pair.  Results of 2D and 2D 
modifications will be compared to identify their characteristic 
differences. 

 
2  Model and Validation 
 

2.1 Gear Contact Model 
As described earlier, any prediction of the static 

transmission error involves not only the geometric deviations 
but also the deformations.  An accurate static elastic model of 

system is required for this purpose. Yet the contact problem of 
helical gears is a rather challenging task.  A gear pair contact 
has a number of unique characteristic features that makes the 
use of conventional finite element method (FEM) very 
inefficient and in many aspects inaccurate.   First of all, the 
width of a typical helical gear contact zone is at least an order 
of magnitude smaller than the other gear dimensions requiring a 
very refined mesh near the contact zone when conventional 
FEM is used.  As contact zone travels over the tooth profile 
surfaces, this fine mesh must follow it resulting in a refined 
mesh over the entire tooth surfaces.  The computational time 
required by FEM to accommodate such a fine mesh is often 
overwhelming.  In addition, the level of geometric accuracy 
required from a gear contact analysis is so high that a 
conventional FEM approach fails to deliver.  Finally, there are 
major difficulties with conventional FEM in generating an 
optimal 3D mesh that is capable of modeling the stress 
gradients in the critical regions, especially at the tooth root, 
while minimizing the total number of degrees of freedom of the 
entire model.   

The contact model employed in this study [19,20] 
overcomes such difficulties by using FEM and surface integral 
methods in conjunction.  A brief description of the salient 
features of the model as applied to a helical gear pair is given 
here as the details of the model formulation can be found in 
papers by Vijayakar [19, 20].   

The first task in gear contact analysis is determining the 
areas that will be in contact at any given position when the gear 
pair is subject to a torque.  A computational grid that is set up 
in the contact zone of the gears obtained by dividing the entire 
face width of each gear into )12( +N  slices. A surface point on 
the mid-plane of each slice of gear p that is closest to the 
surface of gear g is determined.  This selection is carried out 
using the undeformed geometry. A set of )12( +M  grid cells is 
set up centered around this closest point of each slice. Values of 

5=M  and 20=N  are used in this study.  The actual 
dimension of the grid cells in the profile direction is also 
selected such that the entire contact zone is about 30 to 40 
percent smaller that the grid area defined.   

One of the main features of the model used here [19,20] is 
the combined use of surface integral and finite element 
formulations. The inward normal component of the 
displacement vector );( rriju  of a field point r due to a normal 
load applied at a surface grid point ijr  is expressed as  

  
 );()];();([);( )()()( qrqrrrrr ij

fe
ij

si
ij

si
ij uuuu +−=  (5) 

 
where superscripts (si) and (fe) indicate the terms calculated by 
using the surface integral and finite element formulations, 
respectively.    The term within the brackets represent the 
deformation of the point r with respect to the reference point q 
that is better estimated by local deformation field on the 
Bousinesq half space solution than finite elements.  The last 
term on the right hand side is not influenced much by the local 
effects at the surface, and hence, it can be computed accurately 
by FEM.  A matching interface parallel to the contact surface is 
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chosen at a depth on half a finite element dimension below the 
contact surface to build a compliance matrix that is solved by 
using a revised Simplex algorithm.   

In terms of finite element representation of the contacting 
gear bodies, the displacements and coordinates within a finite 
element are approximated by separate sets of shape functions. 
In order to achieve maximum resolution in the root regions, full 
cubic elements with 16 nodes are used.  For coordinate 
interpolation, the shape functions are such that interior elements 
are conventional four-noded, linear, two-dimensional elements.   

A helical gear pair whose design parameters defined in 
Table 1 will be used as an example system.  Figure 2 shows the 
3D contact mechanics model obtained by using the model 
described above.  Here only seven-tooth segments of both gears 
are included in the model.  As the main focus of this study is on 
the prediction of the loaded transmission error )(tε , the 
analysis is performed at 16 position angles defining a complete 
gear mesh cycle, )(tε is predicted as a function of position (or 
time), and Fourier coefficients are computed to obtain the 
harmonic content of the transmission error excitation. 

 
2.2  Validation of the Model 

Before any extensive parametric studies can be performed, 
the transmission error predictions of the computational model 
must be validated though controlled laboratory experiments.   
In order to measure the loaded transmission error under static 
conditions, a power-circulation type of gear test machine shown 
in Fig. 3 was used.   Details of the test machine can be found in 
earlier papers by the second author [4, 6].   

Since rather small angular vibration amplitudes constitute 
the transmission error, a pair of high precision optical encoders 
(18,000 pulse/revolution, Heidenhain model: RON 287) are 
employed for measurement of rotational angles θ  of each gear.  
A pair of signal conditioners (Heidenhain model: IBV 600) are 
used to convert the harmonic encoder signals into TTL square-
wave pulse trains with distinct rising and falling edges.  Figure 
3 illustrates the instrumentation that includes the optical 
encoders, signal conditioners, and a high-speed data analyzer. 
The analyzer software uses a pulse timing technique similar to 
the ones used previously [21,22] that internally compares the 
rising edges of each pulse train against a common 100 MHz 
timer.  Combined with the gear pair radii and tooth count input 
into the analyzer, the timing of the pulses is used to calculate 
the velocity of each gear.  Since the high frequency timer is 
common to both pulse trains, data of one gear is subtracted 
from the other to yield dtd /ε  that is integrated numerically to 
obtain )(tε .  
 
2.3  Comparison with Model Predictions 

Two pairs of precision ground spur gears one of which 
shown in Fig. 4 are used here for a validation of the model.  
Although both test gear pairs have the same basic gear 
parameters listed in Table 1, they differ in terms of their tooth 
profile modifications. The first spur test gear pair chosen has a 
rather short profile tip modification starting at a roll angle of 

�6.23=tα  (far above the pitch point at �9.20=α degrees) and 
the second pair has its tip modification start at the pitch point 

�9.20=tα .  Gears of both pairs have tip relief magnitudes 
mat µ10=  and a symmetric, parabolic lead modification of 

mh µ4= .   
Tests performed with both gear pairs covering a torque 

range of 0 to 300 Nm at an angular velocity of 100 rpm such 
that no dynamic effects are present.  The same gear pairs are 
simulated by using the model shown in Fig. 2, and the results 
are compared in Fig. 5.  Figure 5(a) compares measured )(tε  
time histories of the first test gear pair with predicted ones for 
two complete mesh cycles at different load levels.  The same 
scale is used for each )(tε  in vertical axis except the mean 
values are shifted in order to be able to display them on the 
same figure in the form of a Harris Chart [14].  A good 
qualitative and quantitative agreement is evident in Fig. 5(a) 
regardless of T.  The variation of )(tε  is virtually eliminated at 
a design load of 50≈= dTT  Nm for this gear pair.  The 
comparisons for the second test gear pair is shown in Fig. 5(b).  
Now 200≈dT  Nm.   Again, the measured )(tε  are in good 
agreement with the predictions.  It can be stated from Fig. 5 
that the model predictions are reasonably accurate for all 
practical engineering purposes.  It is especially encouraging 
that the model predicts the same dT  values as the 
measurements suggesting that the optimum modifications 
defined using this model should be valid. 
 
3   Parametric Studies 
 

3.1   2D Tooth Surface Modifications 
Parameters defining 2D tooth profile modifications which 

are described in Fig. 1(a) and equation (3) can be classified in 
three groups, namely tip, root and lead modifications.  A 
parametric study that includes all 10 parameters defining the 
most general form of 2D modifications is not feasible.  Since 
the example helical gear pair used in this parametric study as 
defined in Table 1 is formed by two identical (except their 
hand) helical gears, without loosing generality, same type and 
amount of modifications will be applied to both gears here.  
Accordingly, the parameters in each set, p

DP2  and g
DP2 , will 

have identical values reducing the total number of parameters 
to 5.  Further, profile modifications will be applied only at the 
tip of both mating gears simply since a root modification on the 
teeth of a gear impacts )(tε  in a very similar fashion as a tip 
modification of same type and amount on the mating gear tooth 
surface.   Hence, parameter sub-set that is employed here is 
reduced to },,{2 haP ttD α∈  where g

t
p
tt aaa == , 

g
t

p
tt ααα ==  and gp hhh == . 

First, the magnitude ta  of a linear tip relief applied is 
varied to quantify its influence on )(tε .  The other two 
parameters are kept constant at �2.22=tα  and mh µ2= . The 
predicted )(tε  time histories are analyzed to obtain Fourier 
harmonics of )(tε . The three dimensional plot of Fig. 6(a) 
demonstrates the combined effect of torque transmitted T  and 

ta  on the fundamental (gear mesh) harmonic amplitude of 
)(tε , 1A .  Here, at a given ta  value, 1A  follows a 

characteristic “V-shape” profile as T is varied, reaching its 
minimum value at its design load dTT = .  For instance, a gear 
pair having a linear tip relief of mat µ5=  exhibits a minimum 

1A  value at NmT 200=  suggesting that this particular 
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modification would be optimum for the example gear pair when 
operated at NmT 200= .  Changing T in either direction from 
this particular value increases 1A .  This is also evident from the 
predicted time histories )(tε  shown in Fig. 7 for mat µ10=  at 
various levels of T.  A higher T value simply produces a larger 
amount of tooth deflection requiring a larger modification to 
compensate it.  Following the valley in Fig. 6(a), dT  increases 
linearly with increasing ta .  The same behavior was reported 
previously for spur gears [9,13,23].   As shown in Fig. 8(a), the 
variation of the transmission error first harmonic amplitude 2A  
with varying T and ta  follows the same pattern as that of 1A  in 
Fig. 6(a) except 2A  amplitudes are significantly lower.  Here, 

2A  amplitudes become significant only at very high torque 
values.  

Next, starting roll angle tα  of the linear tip modification in 
profile direction is varied while other two parameters are kept 
constant at mat µ10=  and mh µ2= .  Combined influence 
of tα  and T on 1A  and 2A  amplitudes are shown in Figures 
6(b) and 8(b), respectively.   In Figure 6(b), as tα  is changed 
within the range of 17 to 27 degrees (the pitch point is at 20.9 
degrees), dT  is first increases with tα  up to say �25=tα , 
beyond which it declines.   At certain torque values, more than 
one dT  value becomes possible as this trajectory is crossed 
twice.  For instance, at NmT 350= , a gear pair having either 
one of �22=tα  or �26=tα  could be considered as optimum.  
One physical explanation why dT  starts reducing at higher 
values of tα  is that, as the starting point of the modification 
approaches closer to tip of the tooth, )(tε  must take a shape 
similar to that of an unmodified gear pair.  When tα  reaches 
the tip, the teeth are essentially unmodified, hence 0=dT .  
Referring to Fig. 8(b), the variation of the first harmonic 
amplitude 2A  appears to follow the same trend as that of 1A  
but the magnitude of 2A  is again considerably lower than 1A .  

Finally, the amount of lead crown h  illustrated in Fig. 1(b) 
is varied, given mat µ10=  and �2.22=tα .  In Fig. 6(c), 1A  
is plotted as a function of h and T.  Here, 1A  again follows “V-
shape” profile similar to Fig. 6(a) as T of a gear pair having a 
certain h is varied.  The design load dT  is at the lower end of 
the torque range when 0=h  and increases with h on a 
trajectory defined by the valley of Fig. 6(c).  As shown in 
Figure 8(c), the effect on h on 2A  is again very similar that of 

1A , 2A  amplitudes becoming significant only at higher values 
of h  and T . 

In summary, )(tε  is equally sensitive to all three 
parameters investigated above, ta , tα  and h, making possible 
to define an optimum linear profile modification in more than 
one way.  When a quadratic modification as shown in Fig. 1(a) 
is used in place of a linear modification, the overall sensitivity 
to these parameters remain relatively unchanged.  For instance, 
the same conditions defining Fig. 6(a) are considered in Fig. 9 
expect quadratic tip modifications are used in place of linear 
modifications.  A comparison of Figures 6(a) and 9 suggest that 
the differences are minute, making Fig. 6 to 8 applicable for 
quadratic modifications as well for practical engineering 
purposes.   
 
 

3.2   3D Tooth Surface Modifications 
Referring to the 3D modification parameters defined in 

Fig. 1(b), corners 1, 2, 3 and 4 of gear p meshes with corners 3, 
4, 1 and 2 of gear g, respectively.  Again considering the case 
when the modifications applied to each gear in the pair are 
identical, parameter set defining 3D modifications can be 
reduced to 12 as the corresponding parameter included in each 
set p

DP3  and g
DP3  become equal, g

i
p

i bb = , g
i

p
i ββ =  and 

g
i

p
i λλ =   ( 41 toi = ).   

As the simplest example of bias-in type 3D modifications, 
consider the case with modifications only on the first corner of 
both gears as the other three corners are unmodified.  First, the 
magnitude of the modification at the corner igp bbb 111 ==  is 
varied with the other two parameters kept the same at 

�1511 == gp ββ  and mmgp 2011 == λλ .  Combined influence 
of ib1  and T on the fundamental harmonic 1A  of )(tε  is shown 
in Fig. 10(a).  Again, at any given ib1  value, 1A  follows a V-
shaped profile as T is changed similar to the influence of 2D 
modification parameter ta  shown earlier in Fig. 6(a).  The 
design load dT  is at Nm150  for mb i µ21 =  and at Nm350  
for mbi µ51 = .  Although the dependence on the value of T is 
still evident, the overall 1A  amplitudes are somewhat lower and 
the changes in 1A  with T are less drastic when compared to Fig. 
6(a).  This suggests that 3D modifications could result in 
quieter gear sets in application when the operating torque range 
is wider as it is the case in most automotive and rotorcraft 
applications.   

Next, the starting point of the bias-in modifications in 
involute direction igp

111 βββ ==  is varied between roll angles 
of 15 and 25 degrees covering a wide range around the pitch 
point (20.9 degrees) as shown in Fig. 10(b).  The other two 
parameters are maintained at mbb gp µ511 ==  and 

mmgp 2011 == λλ .  A 3D plot shown in Fig. 12(b) within the 
same range of T  demonstrates the effect of i

1β  on 1A  that is 
qualitatively similar to Fig. 6(b) except now the sensitivity of 

1A  to i
1β  is considerably less.  The amplitudes of 1A  are 

rather low for a large range below �231 =iβ  regardless of T.    
As a final example of bias-in modifications, the starting 

position in lead direction igp
111 λλλ ==  is varied with other 

two parameters kept the same at �1511 == gp ββ  and 
mbb gp µ1011 == .  Corners 2, 3 and 4 are again unmodified.  

Combined influence of i
1λ  and T on 1A  shown in Fig. 10(c) 

follows a similar pattern as Fig. 6(c), but slightly less sensitive 
than h. 

Two separate cases are selected to demonstrate the 
influence of bias-out modifications on )(tε .  Corner 2 of each 
gear is modified in order to obtain a bias-out effect as other 
three corners on each gear profiles are left unmodified.  First, 
the amount of modification ipp bbb 222 ==  is varied with 

�1522 == gp ββ  and mmgp 2022 == λλ .  In Fig. 11(a), the 
influence of ib2  on 1A  is shown. Similarly, the influence of 

igp
222 λλλ ==  is illustrated in Fig. 11(b) with �1522 == gp ββ  

and mbb gp µ1022 == .  Results for both cases suggest that 1A  
increases with increasing with ib2  or i

2λ  regardless of the value 
of T having its lowest value at 02 =ib  and 52 =iλ  mm.    
Therefore, it can be suggested from Fig. 11 that bias-out 
modifications, when applied alone, are detrimental to )(tε . 
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As a final case, consider a gear pair with bias in 
modifications mbb gp µ1011 == , �8.2011 == gp ββ  and 

mmgp 1011 == λλ .  In addition, a bias-out modification of 
fixed starting points �8.2022 == gp ββ  and mmgp 1022 == λλ , 
but of variable magnitude igp bbb 222 ==  is applied.  In Fig. 12, 
the influence of ib2  on 1A  is shown together with a schematic 
of the modifications applied.   Here, NmTd 700=  for 02 =ib  
(only bias-in modifications) and dT  reduces linearly as ib2  is 
increased.  This suggests that bias-out modifications, although 
they are not beneficial when used alone, offer added flexibility 
for optimizing modifications for reduced )(tε . 

 
4  Conclusions 

In this study, a nonlinear finite element contact mechanics 
model of a parallel axis gear pair was employed to study the 
impact of intentional tooth flank modifications on the static 
motion transmission error of the gear pair.  An experimental 
study was performed to demonstrate the accuracy of the 
predictions the model.  The model was used to investigate the 
impact of both conventional 2D and 3D tooth flank 
modifications on the transmission error excitation.  In case of 
2D modifications, a parameter set that included the magnitude, 
extent, and type (both linear or quadratic) of involute tip 
modifications and lead crown.  For 3D modifications, 
parameters defining both bias-in and bias-out type of 
modifications were included.  The combined influence of 
modification parameters and load transmitted on the resultant 
transmission error excitation is quantified.   

It was demonstrated that both types of modifications can 
be designed to minimize the static transmission error excitation 
at a given fixed design load.  Neither modification scheme was 
found to eliminate the influence the applied load on the static 
transmission error amplitude, while the 3D modifications were 
found to be better on this aspect.  Our ongoing work on this 
subject matter focused on the changes on gear stresses and gear 
life as a function of the same gear tooth modifications [24].  In 
addition, the dynamic consequences of helical gear tooth 
modifications are also being investigated experimentally and 
theoretically. 
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Table 1 

Basic design parameters of the example gear pairs used (all 
dimensions are in mm unless specified) 

  
 ___________________________________________________ 
 Number of teeth 50 
 Transverse module 3.0 
 Face width 20.0 
 Transverse Pressure angle (deg.) 20 
 Helix angle (deg.) 0.0 (spur)  
  25.232 (helical) 
 Center Distance 150.0 
 Major diameter  156.0 
 Base diameter  140.954 
 Root Diameter 140.68 
 Circular tooth thickness 4.64 
 ___________________________________________________ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1   Definition of  (a) 2D and (b) 3D tooth surface modification parameters.
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Fig. 2 Contact model of the example helical gear pair. 
 
 

     
 
Fig. 3 Transmission error test machine with optical encoders, 

signal conditioners and the analyzer. 
 
 

          
 
Fig. 4 An example spur test gear pair. 
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Fig. 5 Measured and predicted )(tε of test gear pair under 

different torque levels. (a) mat µ10= , �6.23=tα , 
mh µ4= , and (b) mat µ10= , �9.20=tα , mh µ4= .  

( _____ ) Measurement, ( __o__ ) prediction. 
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Fig. 6 Variation of 1A  with T and 2D linear tip modification 

parameters; (a) ta : variable, �2.22=tα  and 
mh µ2= , (b) tα : variable, mat µ10=  and mh µ2= , 

and (c) h : variable, mat µ10=  and �2.22=tα . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Variation of predicted )(tε as a function of T; 

mat µ10= , �2.22=tα  and mh µ2= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Variation of 2A  with T and 2D linear tip modification 

parameters; (a) ta : variable, �2.22=tα  and mh µ2= , 
(b) tα : variable, mat µ10=  and mh µ2= , and (c) h : 
variable, mat µ10=  and �2.22=tα . 
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Fig. 8 Continued. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Variation of 1A  with T and 2D quadratic tip 

modification magnitude ta ; �2.22=tα  and mh µ2= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Variation of 1A  with T and 3D bias-in modification 

parameters; (a) ib1 : variable, �151 =iβ  and 
mmi 201 =λ , (b) i

1β : variable, mbi µ51 =  and 
mmi 201 =λ , and (c) i

1λ : variable, mbi µ101 =  and 
�151 =iβ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10  Continued. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 Variation of 1A  with T and 3D bias-out modification 

parameters; (a) ib2 : variable, �152 =iβ  and 
mmi 202 =λ , and (b) i

2λ : variable, mbi µ102 =  and 
�152 =iβ . 
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Fig. 11 Continued. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 Variation of 1A  with T and combined bias-in and bias-

out modifications; ib2 : variable, mb i µ101 = , 
�8.2021 == ii ββ , and mmii 1021 == λλ .   
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