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ABSTRACT 

Most of the current models employed in analyzing the 
dynamics of hypoid or bevel gear pair systems are based on 
approximate representations of the tooth meshing kinematics.  
The approximate gear mesh representations that account for 
tooth contact position and load line of action vector are 
normally derived from experimental observations or semi-
empirical considerations.  Moreover, the resultant dynamic 
model is often linear with time-invariant coefficients.  The 
fundamental behavior of the time-varying mesh points and load 
line of action vectors, which can be important characteristics of 
the hypoid gear pair system, have not been fully explored.  To 
address this issue more in-depth, the current study examines the 
inherent spatial and time-varying tooth meshing positions and 
normal load vectors of typical hypoid gear pairs applied in 
automotive systems.  Numerical results of the quasi-static gear 
tooth contact analysis using 3-dimensional finite element 
models are compared to the theoretical data produced by a set 
of analytical tooth contact analysis equations based strictly on 
gear geometry formulation.  The potential effects of gear 
meshing characteristics on dynamic transmission error as well 
as torsional vibration response are also discussed. 
 
INTRODUCTION 

With increased requirements for higher speeds, heavier 
loads, and lighter weights in gear design, the prediction and 
control of dynamic mesh forces and resulting vibration 
transmissibility have become more important.  This is because 
the fundamental dynamic behaviors of the gears are believed to 
have direct control on durability, vibration, and acoustic noise 
response.  In fact, the problem may be more acute in hypoid 
gear set, which is widely used in rear axle drive applications to 
transmit rotational motion between two perpendicular, non-

intersecting axes.  Due to unique shafting configuration, the 
directed line segment of the dynamic mesh force generated is 
oriented at an oblique angle relative to the input and output 
rotational axes.  This unique characteristic tends to worsen the 
dynamic problem compared to other parallel axis gearing 
applications.  

Unlike parallel axis gears, not much effort has been 
devoted to investigate the dynamics of hypoid gears.  This is 
because of its inherently more complex geometry, mesh 
pattern, and dynamic coupling between torsional and 
translational vibration.  Most of the earliest set of research 
investigations on hypoid gears mainly focus on (i) the synthesis 
of machine tool and cutter settings to manufacture higher 
precision tooth profiles in order to achieve the desired 
transmission error and contact patterns (Kawasaki et al. [1], 
Donno, Litvin [2], Feng, Litivn [3], and Litivn [4-5]); (ii) stress 
and load distributions that are partly applied to determine the 
loaded transmission error (Krenzer [6], Gosselin, Cloutier, 
Nguyen [7], Mark [8], Vijayakar [9]); and (iii) purely torsional 
dynamic simulations based on semi-empirical mesh point and 
force vector representations that are essentially time-invariant 
(Kiyono, Fujii, Suzuki [10], Rautert, Kollmann [11], Donley, 
Lim, Steyer [12]).  None of the dynamic simulation work 
satisfactorily addresses the time-varying mesh point and force 
vector characteristics, which are predominant in hypoid 
gearing.   

One of the more comprehensive works to investigate the 
vibration characteristics of hypoid gear set was conducted by 
Cheng and Lim [13-15].  The torsional and translation 
couplings are also considered in their modeling. A 14 degrees-
of-freedom (DOF) linear time invariant (LTI) model was 
proposed for a generic driver-gear-load system.  Modal 
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properties and force transmissibility were studied, and critical 
modes were identified.  Numerous simulations were performed 
to investigate the effects of various gear parameters including 
pinion offset, spiral angle, etc.  Furthermore, a 10-DOF non-
linear time-varying (NLTV) model was also developed that 
ignores the bending rotation coordinates of the pinion and gear.  
The nonlinearity elements considered include backlash and 
mesh stiffness.  This proposed model provided the first glimpse 
of nonlinear behavior in lightly loaded hypoid gear pair.  No 
other studies found in the open literature that is as 
comprehensive and complete as these analyses.  However, the 
models proposed by Cheng and Lim basically still assume time-
invariant mesh point and force vector, which are not exactly 
valid.   

In this paper, the fundamental nature of the hypoid gear 
meshing action, in which the mean contact position vector and 
line of action vary with time, is examined from the viewpoint 
of formulating a dynamic model.  Obviously, the resultant 
motions of the hypoid gear elements must be described in a 3-
dimensional coordinate space rather than in plane form 
typically used for spur gears.  The results presented here will be 
used to construct a suitable gear mesh characteristic for use in 
subsequent non-linear time-varying vibration response 
simulation.  The mesh results obtained from models that 
assume either single-point or multi-point coupling gear mesh 
representation will be compared.  The central discussions will 
be on the variations of the pitch point and line of action vector. 
 
SINGLE-POINT COUPLING MESH MODEL 

The simplest lumped parameter gear mesh model that 
assumes a single-point coupling mesh representation, as shown 
in Figure 1, is commonly used in the simulation of gear 
dynamics.  The two mating gears with mass moment of inertia 
Ii and base radius Ri  (subscript i equals to 1 for the driver gear 
or 2 for the driven gear) are coupled by a linear, unidirectional, 
infinitesimal spring-damper element with stiffness Km and 
damping Cm.  The spring is located at a certain radius from the 
center of the gear (generally known as pitch radius for 
spur/helical gears), and acts along the mesh line of action.  Both 
the line of action vector and the meshing point are frequently 
assumed to be time-invariant, especially in spur and helical 
gear cases.  The system is excited by a periodic transmission 
error e(t).  This model is designed primarily to represent the 
mean gear mesh behavior, whose mesh stiffness is given as a 
function of tooth flexibility and other types of gear compliance.   

Even though the single-point coupling gear mesh model is 
simple and widely used, it is inadequate for analyzing problems 
in hypoid gear dynamics.  Firstly, the variations of the meshing 
point and the line of action vector are not considered.  
Secondly, the dynamic interaction between consecutive gear 
mesh interfaces, especially since hypoid gear pairs possess 
relatively high contact ratios, is not evaluated.  Thirdly, the 

application of the single-point coupling mesh model is mainly 
suitable for spur and helical gears where the gear mesh forces 
normal to the tooth surface always act in the same line of action 
direction.  Therefore, using only a single equivalent mesh 
stiffness to represent the tooth engagement process may be 
sufficient for these parallel axis gears.  This is not the case in 
hypoid gears.  For hypoid gear, a higher order mesh model is 
actually needed to capture the more complex gear engagement 
process where the meshing points and line of action vectors 
exhibit significant time and spatial-varying behavior.  This is 
due to the fact that the mating pinion and gear teeth roll and 
slide along their pitch surfaces as they pass through the 
engagement zone.  Also, there is more than one pair of teeth in 
contact at any given time with each tooth pair having quite 
different line of action vectors.  To account for these distinctive 
meshing behaviors, a multi-point coupling mesh model is 
proposed as described next. 

Figure 1. A single-point coupling mesh model. 
 
 
MULTI-POINT COUPLING MESH MODEL 

The concept of multi-point coupling mesh model is shown 
in Figure 2.  The fundamental concept is based on the 
assumption that more than one tooth mesh coupling interface 
may exist at any given time.  The number of mesh interfaces is 
dependent on contact ratio, load and gear rotation position.  
Each mesh interface is represented by a set of meshing point, 
line of action and mesh stiffness.  Both backlash and Coulomb 
friction non-linearity can be incorporated in each mesh 
interface as well.  Due to the fact that the mesh point paths and 
line of action vectors for the tooth mesh interfaces are not 
collinear, this new mesh model can more accurately reflect the 
true nature of the gear engagement process compared to the 
single-point coupling concept.  The use of this proposed 
concept should be able to predict the system response more 
accurately and provide new results that are not possible in the 
past.  Also, the effects of time-varying characteristics of mesh 
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can be included in the dynamic analysis with fewer 
assumptions needed, the limitation of low contact ratio assumed 
in the previous single-point coupling mesh model can be 
removed. 

In order to construct such as proposed multi-point coupling 
mesh representation, detailed meshing pattern from a 3-
dimensional gear tooth contact analysis is required.  This 
information can be derived from the Contact Analysis Program 
Package (CAPP) developed by Vijayakar [16].  Using CAPP, a 
set of quasi-static analysis is performed to obtain the meshing 
results at each discrete gear angular position.  The meshing 
patterns are condensed further to give a mean mesh point and a 
resultant line of action in which the dynamic mesh force vector 
is assumed to act along.  Unlike all other previous gear mesh 
models that are based on either empirical design equation or 
pure geometry formulation, this proposed analysis yield the true 
mesh representation under load.   

 
Figure 2. Multi-point coupling gear mesh model.  

 
The new multi-point coupling gear mesh model also serves 

as a direct link between the static gear tooth contact analysis 
and gear pair system dynamics.  In our analysis, the predicted 
contact information from CAPP is further processed to obtain 
the relevant gear mesh parameters.  The gear mesh model can 
then be implemented in the dynamic model without having to 
make further assumptions except those used in the quasi-static 
tooth contact analysis.  Furthermore, the proposed multi-point 
coupling gear mesh model has the potential to be easily applied 
in system level vibration problem where most of the 
components are modeled using the finite element method 
(FEM).   

 
GEAR MESH ANALYSIS 

From the detailed quasi-static tooth contact analysis, the 
mesh areas on the tooth surfaces are discretized into a series of 

smaller cells.  Each cell contains a localized compliance cij that 
is a function of the spatial dimensions, gear mesh position, and 
applied mean torque.  The position vector of the contact cell n 
in the coordinate system S(l) (l=1,2 for pinion, and gear, 
respectively, and l=0 for a fixed coordinate system with the 
origin at the crossing point of pinion and gear rotation axis 
when viewed from above) is Tl
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as shown in Figure 3. 

 

Figure 3. Determination of resultant forces and moments using 
the contact cell concept. 

 
The projection of the unit normal vector into the tangential 

direction of rotational motion relative to the S(l) coordinate 
system represented by i axes can be expressed as 
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where i(l), j(l) and k(l) are the triad of unit vectors that define the 
coordinate system S(l).  Consider the resultant normal force 
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Here, jn  is the total number of contact cells found on tooth 
pair j, )()( nl

jδ  is the deformation of cell n, and )(l
nijn  and )(l

nijν  
are the directional components along the i-axis of the normal 
and friction forces for cell n of gear member (l).  The above 
equations essentially give the average normal and frictional 
loads by summing the forces on the individual cells.  Since 

)(tWj  is the equivalent normal force vector for mesh interface 
j, and )(tnij  and )(tijτ  are directional components along the i-
axis of the normal and frictional forces.  Their elements make 
up the corresponding directional vectors jn and jτ .  It should 
be noted that both vectors are functions of mesh position and 
applied pinion torque.   

The resultant moments of each contact cell’s normal and 
friction forces about the i-axis in mesh interface j are calculated 
from: 
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The position of the mesh point on gear member (l) relative to 
the gear centroid at the interface j is 
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the pressure weighted contact location of the cells.  The mesh 
points are not necessarily the geometric center of the meshing 
cells since both the force and gear ratio continuity must be 
maintained in the process.  It is explicitly given by 
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The mesh stiffness of each interface is calculated by fixing 

the gear and rotating the pinion about the nominal operational 
axis.  Thus, the loaded transmission error along the line of 
action direction for interface j is 
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Assuming that the mesh points for loaded and unloaded 
conditions are identical, the normal mesh stiffness kj(t) for the 
mesh interface j can be shown to be 
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where θL and θ0 are the angular transmission errors under 
loaded and unloaded conditions, respectively, and )(tWj  is the 
equivalent normal mesh force at the mesh interface j.  Also, 
note that the instantaneous kj(t) is a function of load, tooth 
geometry, and angular position.  Thus, the mesh properties 

obtained through these procedures are time-varying and load-
dependent.  The procedures to compute the mesh stiffness, line 
of action vector and friction force vector for a particular mesh 
interface are summarized in Figure 4. 

 
Figure 4. Summary of multi-point coupling gear mesh analysis. 

 
 

SIMULATION RESULTS 
First, a light load case is studied to allow the comparison of 

the results of the proposed multi-point coupling gear mesh 
theory to an existing mesh representation based purely on 
geometric data only where no load is considered.  In this case, 
the quasi tooth contact analysis applying CAPP is performed by 
imposing a small nominal force in order to keep the teeth in 
contact.  In this paper, the torque used is about 5 Nm, which is 
small relative to the normal working torque of several 
thousands Nm.  The use of this small load is to ensure that the 
quasi-static tooth contact analysis result is dictated mainly by 
the tooth geometry parameters only.  

The directional cosine angles of the line of action vector 
from the geometry-based single-point coupling mesh model and 
those from the newly calculated CAPP-based multi-point 
coupling mesh model are compared in Figure 5(a-c) for the x, 
y, and z axis, respectively.  From these curves, it can be seen 
that under very light load, only one pair of teeth has significant 
contact.  Furthermore, fairly good agreements are observed 
between the two different models.  The comparison of the 
coordinates of the meshing points is shown in Figure 6 (a-c) for 
the x, y, and z coordinates, respectively.  Again from these 
curves, it can be seen that the mesh points computed from both 
methods possess the same general trend. 

The mesh information obtained from the present method is 
further used to calculate the mean mesh data as shown in Table 
1.  Here, the mesh information from the single-point coupling 
gear mesh model is also listed for comparison to the spatially 
averaged mesh information from the proposed multi-point 
coupling gear mesh model.  In general, as expected, we see 
fairly good agreement between these two models.  It may be 
noted that the correct gear ratio is also maintained in the data 
reduction process.   
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Table 1. Comparisons of the predicted mesh point coordinates 
and line of action vector. 

 
In the case of a higher torque load, the results are shown in 

Figure 7.  Here, the directional cosine angles of the line of 
action vectors for both light and high load cases are compared.  
Both sets of results are computed by again applying the 
proposed CAPP-based multi-point coupling gear mesh model.  
It may be noted that the differences as large as 4 degrees are 
observed, which may produce significant differences in system 
response.  Figure 8 shows the comparisons of the coordinates of 
meshing points for light and higher load results.  The mesh 
points are observed to be quite different between the two cases.  
The mesh point location along the gear rotation axis appears to 
be most influenced by the load level applied.  This is because 
under load, the mesh point will shift along the width of the 
tooth surface.  From these plots, it can be concluded that the 
load conditions strongly influence the meshing properties of the 
gear sets.  This suggests that the single-point coupling gear 
mesh model, which is generally based on geometry relations, is 
inferior under heavier load.  

Another important aspect of gear mesh properties is the 
definition of the mesh stiffness.  Previous representation 
typically uses simple beam bending equation or measured data.  
The mesh stiffness is assumed either to be time-invariant or 
simple square-wave function.  Hence, it is very difficult to find 
a more exact mesh stiffness representation as a function mesh 
location and load level without adopting many assumptions.  
Using the proposed multi-point coupling gear mesh concept, 
this difficulty can be overcome as the mesh stiffness is defined 
for each meshing interface as a function of angular position.  
Figure 9 shows a set of curves showing the variation of mesh 
stiffness over one mesh cycle.  The time-invariant mesh 
stiffness model used previously is also shown in the form of a 
straight horizontal line for comparison.  From this comparison, 
the previous time-invariant model clearly cannot be used to 
simulate the true engagement process.   

 
CONCLUDING REMARKS 

A new gear mesh model for hypoid gears has been 
proposed, which can be applied to formulate the right-angle 
geared rotor dynamic model.  The new gear mesh model yields 
a multi-point coupling gear mesh representation by applying 
the results of the quasi-static tooth contact analysis.  The 
proposed gear mesh model is capable of representing the time 
and spatial-varying mesh properties of the hypoid gear pair 
under loaded condition more precisely.  Comparison of the 

results of the proposed gear mesh model with the current 
geometry-based gear mesh theory for no load case shows 
excellent agreement.  Furthermore, a more direct connection 
between the results of the gear quasi-static tooth contact 
analysis and gear dynamics is made possible using this 
proposed gear mesh model.  This connection, which has not 
been derived prior to this research work, can be applied to gain 
a better understanding of the gear mesh properties and the 
possible influences on system dynamics. 

 
ACKNOWLEDGEMENTS 

This material is based upon work partly supported by the 
National Science Foundation under Grant No. 9978581, and the 
Hypoid/bevel Gear Dynamic Modeling Consortium under the 
direction of Prof. Teik C. Lim.  Also, the permission granted by 
Dr. Sandeep Vijayakar of ANSOL to use CAPP for part of the 
calculations is greatly appreciated.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of the directional cosine angles relative 
to the (a) x-axis, (b) y-axis, and (c) z-axis. 

(Keys:        , CAPP-based ;        , geometry-based) 
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Figure 6. Comparison of the mesh point positions: (a) x, (b) y, 
and (c) z coordinates. 

(Keys:        , CAPP-based ;        , geometry-based) 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Effect of load on the directional cosine angles 
relative to the (a) x-axis, (b) y-axis, and (c) z-axis. 

(Keys:        , light load ;        , tooth 1;       , tooth 2;   
o, tooth 3 under higher load) 
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Figure 8. Effect of load on meshing point locations: (a) x, (b) y, 
and (c) z coordinates. 

(Keys:        , light load ;        , tooth 1;       , tooth 2;   
o, tooth 3 under higher load) 
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