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Abstract

A computational model of a planetary gear set is employed to study the influence of surface wear on the

dynamic behavior of a typical planetary gear set. The overall computational scheme combines a wear model
that defines geometric description of contacting gear tooth surfaces having wear and a deformable-body

dynamic model of a planetary gear set. The wear model employs a quasi-static gear contact model to

compute contact pressures and Archard’s wear model to determine the wear depth distributions. The worn

surfaces are input into the dynamic model to quantify the impact of wear on gear tooth and mesh dynamic

forces. The results on a planetary gear set having a fixed planet carrier indicates that the dynamic behavior

is nonlinear due to tooth separations in its resonance regions. The results for worn gear surfaces indicate

that surface wear has a significant influence in off-resonance speed ranges while its influence diminishes near

resonance peaks primarily due to tooth separations.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Planetary gear sets, also known as Epicyclic gear drives, are commonly used in a large number of
automotive, aerospace and industrial applications. They posses numerous advantages over parallel-
axis gear trains including compactness of design, availability of multiple speed reduction ratios, and
*
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less demanding bearing requirements. Most common examples of planetary gear sets can be found
in automatic transmissions, gas turbines, jet engines, and helicopter drive trains. A typical simple
planetary gear set consists of a sun gear, a ring gear and a number of identical planet gears (typically
3–6) meshing both with the sun and ring gears. A common carrier holds the planets in place.

Dynamic analysis of planetary gears is essential for eliminating noise and vibration problems of
the products they are used in. The dynamic forces at the sun-planet and ring-planet meshes are the
main sources of such problems. Although planetary gear sets have generally more favorable noise
and vibration characteristics compared to parallel-axis gear systems, planetary gear set noise still
remains to be a major problem. The dynamic gear mesh loads that are much larger than the static
loads are transmitted to the supporting structures, in most cases, increasing gear noise. Larger
dynamic loads also shorten the fatigue life of the components of the planetary gear set including
gears and bearings.

Surface wear is considered one of the major failure modes in gear systems. In case of planetary
gear sets, experimental data has shown that especially the sun gear meshes might experience
significant surface wear when run under typical operating conditions [1]. While wear is a function
of a large number of parameters, sliding distance and contact pressure were shown to be most
significant parameters influencing gear wear [1]. Wear of tooth profiles results in a unique surface
geometry that alters the gear mesh excitations in the form of kinematic motion errors, enhancing
the dynamic effects.

Modeling of planetary gear set dynamics received significant attention for the last 30 years. A
number of studies proposed lumped-parameter models to predict free and forced vibration
characteristics of planetary gear sets [2–9]. These models assumed rigid gear wheels, connected to
each other by springs representing the flexibility of the meshing teeth. In these studies (except [6]),
nonlinear effects due to gear backlash and time-varying parameters due to gear mesh stiffness
fluctuations were neglected. The corresponding Eigen value solution of the linear equations of
motion resulted in natural modes. Modal summation technique was typically used to find the
forced response due to external gear mesh displacement excitations defined to represent motion
transmission errors. These lumped-parameter models vary in degrees of freedom included, from
purely torsional models [2–4,9] to two [5,6,8] or three-dimensional transverse-torsional models [7].
While these models served well in describing the dynamic behavior of planetary gear sets quali-
tatively, they lacked certain critical features. First, the gear mesh models were quite simplistic with
a critical assumption that complex gear mesh contact interaction can be represented by a simple
model formed by a linear spring and a damper. These models demand that the values of the gear
mesh stiffness and damping, as well as the kinematic motion transmission error excitation, must
be known in advance. It is also assumed that these parameter values determined quasi-statically
remain unchanged under dynamic conditions. In addition, gear rim deflections and Hertzian
contact deformations are also neglected. Another group of recent models [10,11] used more
sophisticated finite element-based gear contact mechanics models. These computational models
address all of the shortcomings of the lumped-parameter models since the gear mesh conditions
are modeled as individual nonlinear contact problems. The need for externally defined gear mesh
parameters is eliminated with these models. In addition, rim deflection and spline support con-
ditions are modeled accurately [12]. These models are also capable of including the influence of the
tooth profile variations in the form of intentional profile modifications, manufacturing errors or
wear on the dynamic behavior of the system.
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The study of wear of gear contact is becoming one of the emerging areas in gear technology. A
number of recent gear wear modeling efforts [1,13–16] form a solid foundation for more accurate,
larger system analyses. All of these models use Archard’s wear model [17] in conjunction with a
gear contact model and relative sliding calculations. These studies focused on prediction of wear
of either spur [13,14] or helical [1,15,16] gear pairs in a parallel-axis configuration. The tooth
contact pressures were computed in these models using either simplified Hertzian contact [14–16]
or boundary element [1] formulations under quasi-static conditions. Sliding distance calculations
were carried out kinematically by using the involute geometry and Archard’s wear model was used
with an empirical wear coefficient to compute the surface wear depth distribution.

A number of studies investigated the influence of wear on gear dynamics response [18–20].
Among them, Kuang and Lin [18] simulated the tooth profile wear process by the model proposed
by Ref. [14], and predicted the variations of the dynamic loads and the corresponding frequency
spectra as a function of wear for a single spur gear pair. Wojnarowski and Onishchenko [20]
performed analytical and experimental investigations of the influence of the tooth deformation
and wear on spur gear dynamics. They stated that the change in the profiles of the teeth due to
wear must be taken into account when dealing with the durability of the gear transmissions as
well. These previous models considered surface wear effects for only a single spur gear pair,
avoiding multi-mesh gear systems such as the planetary gear sets. They focused on only external
gears and used lumped-parameter dynamic models excluding nonlinear and time-varying effects.

1.1. Objectives and scope

As none of the previous studies on planetary gear set dynamics took into account the effect of
wear, this study is intended to describe to the influence of gear tooth surface wear on dynamic
behavior of planetary gears. A deformable-body dynamic model similar to the one proposed
earlier [11] will be used to investigate the influence of tooth surface wear on the dynamic behavior
of planetary gear sets. The main objective here is to quantify the influence of surface wear on
dynamic behavior of planetary gear sets. A planetary gear set formed by spur gears will be
considered. A wear prediction model will be proposed to predict the gear surface wear distribution
under quasi-static conditions. Different amounts of wear depths will then be introduced in the
dynamic model to quantify the differences in dynamic behavior from the baseline behavior rep-
resenting a gear set having no wear. Several complex dynamic phenomena exhibited by the
planetary gear set including nonlinear behavior such as jump discontinuities and tooth separa-
tions will be demonstrated. The influence of surface wear on such behavior will also be described.
2. Computational model

This study relies on two previously developed models for investigation of the effect of surface
wear on the dynamics of planetary systems. First, a wear model developed by Bajpai et al. [1] will
be used to determine the tooth surface wear profiles after different wear cycles. This model uses
quasi-static finite elements-based gear contact model for prediction of the gear contact pressures
and employs Archard’s wear model to predict wear of contacting tooth surfaces. Predicted tooth
surface wear will then be applied to a deformable-body planetary gear dynamic model similar to



698 C. Yuksel, A. Kahraman / Mechanism and Machine Theory 39 (2004) 695–715
the one proposed by Kahraman et al. [11] to quantify the impact of gear surface wear on the
dynamic behavior of planetary gear sets.
2.1. Wear prediction model

Archard’s wear equation [17] can be expressed for a local point on one of the contacting gear
surfaces as
h ¼
Z s

0

kP ds ð1Þ
where k is an experimentally determined wear coefficient, h is the wear depth accumulated, P is the
contact pressure, and s is the sliding distance between the mating surfaces at the point of interest.
Here, all the parameters other than the contact pressure and sliding distance are accounted for by
k. These include many material, heat treatment, surface roughness and lubrication related
parameters. While the wear model can be improved by describing additional parameters explicitly
in Eq. (1), it was shown to work sufficiently well for engineering purposes [1].

The flowchart of the overall wear prediction model is shown in Fig. 1 [1]. The initial geometric
description of the gear tooth surfaces serves as the initial state for the wear prediction and each
gear tooth contact surface is denoted by ðGj

ijÞ
p
and ðGj

ijÞ
g
where p and g represent the driving and

the driven gears. Here, Gij is the deviation of a tooth surface point ij from the perfect involute
surface, and j indicates the number of geometry updates done so far in analysis with j ¼ 0
meaning that the gear surfaces are the initial unworn ones. A fixed surface grid is defined in the
active surface of the tooth of interest (for both gears) by defining I equally spaced grid lines
(i ¼ 1; 2; . . . ; I) in the involute direction and J equally spaced grid lines (j ¼ 1; 2; . . . ; J ) in the face
width direction.

A commercial quasi-static deformable-body contact mechanics model [21] is employed here to
predict the instantaneous contact pressure distributions at discrete rotational positions r 2 ½0;R�
where the amount of gear rotation accomplished between r ¼ 0 and r ¼ R covers a complete wear
cycle of the tooth of interest. In other words, at r ¼ 0, the tooth of interest on gear p initiates
contact near its root with a tooth of gear g. The contact line moves upward on this tooth leaving
the tooth at its tip at r ¼ R. The contact mechanics model which applies a FE model in con-
junction with a surface integral formulation [21] gives the contact pressures ðP j

ijÞ
p;g
r of point ij of

the teeth of p or g at a given rotational position r.
Next, the sliding distance ðsjijÞ

p;g
r!rþ1 is defined as the distance by which a point represented by

node ij on one gear slides with respect to its corresponding point on the mating gear as gears
rotate from position r to position r þ 1. The sliding distance calculations must be carried out only
for the nodes with nonzero ðP j

ijÞ
p;g
r for at least two consecutive rotational positions and must be

continued as r is increased until ðP j
ijÞ

p;g
r becomes zero again. Assume that the leading edge of the

contact zone reaches a node ij on gear p at r ¼ m, and at this position, it is in contact with a point
a on gear g. In other words, their position vectors are equal at this instant, ðXaÞgm ¼ ðXijÞpm. When
the gears are rotated to the next position r ¼ mþ 1, these two points are no longer in contact and
the distance between them represents the sliding distance occurred between positions r ¼ m and
r ¼ mþ 1, i.e.
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Fig. 1. Flowchart of the iterative tooth wear prediction procedure [1] consisting of models for gear contact, sliding

distance and wear computations.
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ðsjijÞ
p
m!mþ1 ¼ kðXaÞgmþ1 � ðXijÞpmþ1k ð2Þ
If the contact zone leaves the same point ij after position r ¼ t, the sliding distance experienced by
nodal point ij of gear p as gears rotate from position r to r þ 1 is given in general terms as [1]
ðsjijÞ
p
r!rþ1 ¼

kðXaÞgrþ1 � ðXijÞprþ1k �
Pr

q¼mðsjijÞ
p
q�1!q

��� ���; m6 r6 t

0; 06 r6m or t < r < R

(
ð3Þ
This procedure is repeated for the points of gear g as well. With ðP j
ijÞ

p;g
r and ðsjijÞ

p;g
r!rþ1 (r 2 ½0;R�)

are known, the wear occurred at each node between positions r and r þ 1 is calculated from
Eq. (1) as
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ðdhjijÞ
p;g
r!rþ1 ¼

1

2
kp;gðsjijÞ

p;g
r!rþ1 ðP j

ijÞ
p;g
r

n
þ ðP j

ijÞ
p;g
rþ1

o
ð4Þ
Thus, the total wear accumulated at node ij during one complete wear cycle becomes
ðDhjijÞ
p;g ¼

XR
r¼0

ðdhjijÞ
p;g
r!rþ1 ð5Þ
Accumulated wear depth is obtained by adding wear depth for many cycles until it reaches ej.
Here, ej is a predetermined threshold value that represents a certain amount of change on
ðGj�1

ij Þp;g to warrant a new contact analysis to update the pressures corresponding to the new worn
geometries ðGj

ijÞ
p;g
. When the maximum wear depth reaches ej at any point on the tooth surface

since the last geometry update, the new worn geometry is fed into the contact mechanic model for
an update of ðP j

ijÞ
p;g
r . The wear amount at nodes ij of gears p and g accumulated after the jth

pressure update can be written as
ðhjijÞ
p;g ¼

XCj

c¼1

ðDhjijÞ
p;g
c ð6Þ
where Cj is the number of wear cycles required to reach the wear threshold ej. After carrying out
the iterations until jth geometry update when a point on either gear surface reaches the maximum
allowable wear value of etot, the total wear depth distribution at node ij just before the jth update
is given by
hp;gij ¼
XK
j¼1

ðhjijÞ
p;g ð7Þ
2.2. Deformable-body dynamics model

Worn surface profiles ðGj
ijÞ

p;g
predicted by the wear model are used in a dynamic model to

quantify the changes in dynamic behavior. A commercial gear contact mechanics software
package [22] is used to develop the dynamic model of the planetary gear set. The model uses finite
element (FE) method to compute relative deformations and stresses for points away from the
contact zones and semi analytical techniques for the points within the contact zones, is employed
[22]. The semi analytical FE approach does not require a highly refined mesh at the contacting
tooth surfaces, reducing the computational effort while conventional FE models require a refined
mesh at gear tooth region, limiting the model to static analysis only. Therefore, the model used
here allows a more accurate and comprehensive study of planetary gear dynamics than the
conventional FE models [11]. The gears have complex shapes that can be best modeled by the FE
method. The tooth surfaces are modeled by a large number of coordinate nodes, representing the
involute shape and surface modifications making it possible to incorporate worn profiles ðGj

ijÞ
p;g
.

The width of the contact zone in typical gear applications is two orders of magnitude smaller than
the dimensions of the gear teeth themselves, requiring a very fine mesh inside the contact zone.
The location of the contact zone changes as the gears enter and exit the mesh. When conventional
FE models are used, besides having an extremely refined mesh, re-meshing is necessary for every
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contact position. The model used here avoids this problem since deformations near or at the
contact zone predicted by using a semi-analytical formulation are matched with the deformations
away from the contact predicted by using FE method.

The model attaches a reference frame to each individual component and the finite element
computations are done for each individual component separately. The mesh stiffness and mesh
contact forces, comprising the dynamic excitation for the system, are evaluated internally at each
time step [22]. Contact conditions are handled as essentially linear inequality constraints whose
convergence is ensured by a revised Simplex solver.

A contact analysis determines the contact stresses and deformations of the gears at each time
step. The elastic deformations of the gears are much smaller and must be superposed on the rigid
body motions. By choosing a gear coordinate frame that follows the rigid body motion, the FE
displacement vector xfi for gear i can be represented by a linear system of differential equations
[10,11]
Mffi€xfi þ Cffi _xfi þ Kffixfi ¼ ffi ð8Þ

where ffi is the vector of external loads. Rayleigh’s damping model is used here in the form
Cffi ¼ lMffi þ gKffi where l and g are constant coefficients. Representing the rigid body motions
of the reference frame by xir and combining it with Eq. (8) results in
Mffi Mfri

Mrfi Mrri

� �
€xfi

€xri

� �
þ Cffi Cfri

Crfi Crri

� �
_xfi

_xri

� �
þ Kffi Kfri

Krfi Krri

� �
xfi

xri

� �
¼ ffi

fri

� �
: ð9Þ
The equations for each gear are assembled into the entire planetary gear system to obtain the
overall matrix equation of motion
M€xþ C _xþ Kx ¼ F ð10Þ

For the solution of the above equation, the contact mechanics model [22] employs a time-
discretization scheme based on Newmark method as used successfully in previous studies [10,11].
3. Results and discussion

An example spur-type planetary system representative of typical gear sets in automatic
transmission systems is considered here. Design parameters of the example system are listed in
Table 1 and dynamic model is shown in Fig. 2. The sun gear is the input, the internal gear is the
output, and the carrier is held stationary. A constant torque of 25 Nm/mm face width (FW) is
applied to the input member. The system has four equally spaced planets that are not allowed to
float radially. In order to avoid added complexity of ring gear bending modes [11], the outside
diameter of the internal gear is chosen as rigid throughout this study while radial planet bearing
flexibilities are included.

Dynamic analysis of the model shown in Fig. 2 took a significant computational time. The
simulation must be carried out for a reasonably long period to surpass the transient region. For
each analysis, first a speed ramp up was simulated for a complete input revolution to pass through
the transients, followed by a more refined analysis at the desired speed to cover two complete
input revolutions. The steady state response is extracted from the last stage of the analysis. When



Table 1

Design parameters of the example system (all dimensions are in mm unless specified)

Sun Planet Ring

Number of teeth 34 18 70

Module 1.5 1.5 1.5

Pressure angle, degrees 21.3 21.3 21.3

Circular tooth thickness 1.895 2.585 1.884

Hob tip radius 0.2 0.2 –

Fillet radius – – 0.5

Outer radius 26.37 15.25 58.95

Root radius 23.00 11.875 55.00

Minor radius – – 51.725

Inner radius 12.88 5.94 –

Face width 30 30 30

Fig. 2. Two-dimensional deformable-body dynamic model of the example planetary gear set having a stationary

carrier.
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the input speed is increased by a small increment, as it is the case in an actual speed sweep, the last
point of the steady state motion from the previous speed increment was considered as the initial
condition followed by a rapid ramp-up and a refined steady state simulation.

Dynamic analyses were performed within an input speed range up to Xin ¼ 15; 000 rpm, with a
speed increment between 50 and 250 rpm. In each analysis, individual tooth loads at the sun and
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ring gear meshes of the planet gears were considered the output parameters. The time increment is
adjusted at each analysis such that there are nearly 120 data points per tooth mesh cycle that was
found to be a sufficient resolution to capture high frequency dynamic effects on tooth loads. Total
gear mesh force time histories were obtained by adding all tooth forces at a given mesh and the
corresponding frequency spectrum was obtained by using a fast Fourier transform (FFT) routine.

In predicting the wear depth, a wear coefficient value of k ¼ 10�18 m2/N was used in this
analysis. This value was determined experimentally by Bajpai et al. [1] using a similar automatic
transmission final drive planetary gear set formed by case carburized shaved external gears and
shaped internal gears. Bajpai, et.al. also pointed out that the wear at the ring-planet meshes is
simply negligible compared to those measured at the sun-planet meshes. In the power flow
configuration considered, a sun gear tooth that mates with four planets will experience four wear
cycles per input revolution, while a ring tooth goes through only 4ðZs=ZrÞ ¼ 4ð34=70Þ ¼ 1:94 wear
cycles for the example system. Therefore, given this kinematic condition and previous experi-
mental observations [1], wear at the ring-planet mesh was neglected in this study all together for
the sake of simplicity.

At the beginning, the sun and the planet gears are assumed to have perfect involute profiles with
no modifications, i.e. ðG0

ijÞ
p;g ¼ 0 in Fig. 1. The initial contact pressures ðP 0

ijÞ
p;g
r were predicted by

using the contact mechanics model of Fig. 3 [24]. Here p and g denote the sun and planet gear,
respectively. The contact analysis was carried out at R ¼ 200 rotational positions covering a
complete wear cycle through a total of 20� of rotation. The fixed tooth surface grid is defined by a
total of 10,000 points with I ¼ 50 and J ¼ 200. Using the ðP 0

ijÞ
p;g
r values, the wear analysis is
Fig. 3. A three-dimensional quasi-static contact mechanics model of the sun-planet pair of the example planetary gear

set.
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continued until the maximum wear depth at any of the grid points reaches the threshold value of
ej ¼ 2:5 lm. At that point, worn surface geometries ðG1

ijÞ
p;g

are used to update the pressure values
by using the contact model to obtain ðP 1

ijÞ
p;g
r . This is followed by another wear simulation until the

change in the worn geometry again reaches ej ¼ 2:5 lm to warrant another pressure update. This
iterative loop is repeated six times (j ¼ 1–6). The wear analysis is terminated when the total
cumulative wear of any point on surfaces of either gear reaches etot value of nearly 15 lm.

Fig. 4 shows the distribution of wear depth at various j in the mid-plane of the gears as a
function of gear roll angles. Only the wear amounts in this mid-plane are shown since the wear
profiles remain uniform along the face width of gears. It is evident from Fig. 4(a) that wear along
the pitch line of the sun gear at roll angles of 22.3� is minimal since the relative sliding at pitch
point is theoretically zero. The same is thru for the planet gear as well. Maximum wear on sun
gear occurs in the dedendum region, below the pitch line. Wear depth goes to zero at the tip since
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both the sun gear and planets have tip chamfer. A similar wear pattern is observed for the mating
planet gear, except the addendum wear is more significant and the maximum wear depth of the
planet gear tooth is considerably smaller than those of the sun gear. One reason for this is that for
each complete rotation (again for the particular power flow considered here with a four planet
system), a tooth on sun goes through four wear cycles while a planet tooth has only
Zs=Zp ¼ 34=18 ¼ 1:89 wear cycles.

3.1. Baseline dynamic response

A planetary gear set having unworn involute surfaces ðG0
ijÞ

p;g
forms the baseline for the dynamic

behavior. In this study, the dynamic response of the planetary system will be described in terms of
dynamic tooth and mesh loads acting on the gears. Dynamic mesh loads are of special interest
since they correlate to both fatigue and noise behavior of the gear set. The dynamic model used
here [22] has the post-processing capability to compute the individual tooth forces along the line
of action from the distributed contact pressures. Define F ðtÞ

s and F ðtÞ
r as sun and ring tooth forces

where superscript t denotes tooth and the subscripts s and r denote the sun and ring gears,
respectively. Both F ðtÞ

s and F ðtÞ
r are time dependent and are given per mm FW.

Fig. 5(a1) and (b1) illustrate F ðtÞ
s and F ðtÞ

r at Xin ¼ 2000 rpm for three complete mesh cycles. In
Fig. 5(a1), focusing on the middle mesh cycle, the mesh cycle starts with one tooth ðiÞ carrying the
entire mesh load. The next tooth ðiþ 1Þ starts sharing some of the load with tooth ðiÞ for a short
period before tooth ðiÞ moves out of the mesh, leaving tooth ðiþ 1Þ to carry the entire mesh force.
This behavior is repeated for each mesh cycle. About 1/5 of the mesh cycle has two teeth in contact
and the rest has only one tooth in contact. In Fig. 5(b1), on the other hand, double tooth contact
is maintained for the entire mesh cycle except a very small period in the middle of the mesh cycle
when there is only one tooth contact. This difference is mostly because the ring gear meshes have
larger involute contact ratios allowing more teeth to share the mesh load.

Total sun/planet and ring/planet mesh forces F ðmÞ
s=p and F ðmÞ

r=p are obtained by adding the tooth

force time histories at a given mesh cycle i as F ðmÞ
j=p ðtÞ ¼ F ðti�1Þ

j ðtÞ þ F ðtiÞ
j ðtÞ þ F ðtiþ1Þ

j ðtÞ where j ¼ s; r.
Fig. 5(a2) and (b2) show F ðmÞ

s=p and F ðmÞ
r=p as a function of mesh cycles, respectively. As both F ðmÞ

s=p and

F ðmÞ
r=p are periodically time varying functions, a FFT analysis results in line spectra as shown in Fig.

5(a3) and (b3). Here, the horizontal frequency axis is normalized using the gear mesh frequency
fm ¼ ZsXin=60 in Hz where Xin is given in rpm, reducing them to order spectra.

Fig. 6 shows F ðmÞ
s=p at four different Xin values to illustrate that F ðmÞ

s=p amplitudes change signifi-

cantly with Xin, which is also true for the ring gear meshes. Given the order spectra of F ðmÞ
j=p at

a given Xin, the root-mean-square (rms) value of F ðmÞ
j=p (j ¼ s; r) can be defined as

F ðrmsÞ
j=p ¼ ½

Pq
i¼1ðF

ðiÞ
j=pÞ

2�1=2 where F ðiÞ
j=p is the ith harmonic amplitude. Here q ¼ 6 was found sufficient.

In Fig. 7, F ðrmsÞ
s=p and F ðrmsÞ

r=p forced response curves of the example baseline system (no wear and
no modifications) are shown at an input torque value of 25 Nm/mm FW. Also displayed is a
second scale for the horizontal axis showing the corresponding fm values in Hz. This range of Xin

covers most aerospace and automotive applications. Fig. 7 exhibits several resonance peaks at
which the dynamic loads are significantly higher than the corresponding static loads. Five such
peaks were identified in both figures. Examining the variation of individual harmonic compo-
nents of F ðmÞ

s=p and F ðmÞ
r=p with Xin, it is found that the first harmonic defines only the quasi-static
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component of the response and it does not contribute to any of the resonance peaks. The second
gear mesh harmonic component dictates the resonance peak around Xin ¼ 8500 rpm. Similarly,
the third harmonic controls the peak near Xin ¼ 13; 000 rpm and the fourth harmonic defines the
peaks near Xin ¼ 4200 and 10,750 rpm. While such behavior might look complex, it can be de-
scribed with the help of a lumped parameter dynamic model [4,7,9] and the planet-phasing for-
mulations proposed in earlier studies [7,23]. Since the ring gear rim is not allowed to deflect and
sun and planet gear rims are also relatively rigid, the purely torsional model of proposed in
reference [4] should be sufficiently accurate to define the natural frequencies and the mode shapes,
provided that the system parameters such as gear inertias and average gear mesh stiffness can be
estimated accurately with the help of the deformable-body model [21]. This model resulted in
natural frequencies of f1 ¼ 0, f2 ¼ 9895 Hz, f3 ¼ f4 ¼ f5 ¼ 20; 800 Hz and f6 ¼ 23; 225 Hz. It is
also noted that mode shapes corresponding to f2 and f6 are ‘‘in-phase’’ while the modes corre-
sponding to f3–f5 are ‘‘sequentially-phased’’ [4,7]. Mathematically, if the displacement vector is
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defined as H ¼ ½hs; hr; hp1; hp2; hp3; hp4�T, the shape of in-phase modes are U2;6 ¼ ½s; r; p; p; p; p�T and

those of the sequentially phased modes are U3�5 ¼ ½0; 0; p1; p2; p3; p4�T such that
P4

i¼1 pi ¼ 0 [4,7].

It was stated earlier [7,23] that the meshes of the sun gear and the ring gear with the planets
have similar phasing conditions. Specifically, for a system with equally spaced planets, the ith
harmonic of any excitations originated at the meshes of the sun gear with planets will be in phase
if iZs=n ¼ integer and sequentially phased if iZs=n 6¼ integer. Similarly, the ith harmonic of any
excitations originated at the meshes of the ring gear with planets are in phase if iZr=n ¼ integer
and sequentially phased if iZr=n 6¼ integer. Here Zs and Zr are the number of teeth of the sun and
ring gears and n is the number of planets. For the example system having Zs ¼ 34 and Zr ¼ 70 and
n ¼ 4, iZs=n ¼ integer if i ¼ even and iZs=n ¼ non-integer if i ¼ odd suggesting that even har-
monics of sun-planet mesh excitations are in phase and odd harmonics are sequentially phased.
The same is true for the ring gear meshes as well. It was also shown [23] that an in-phase mode
could only be excited by the ith harmonic components of gear mesh excitations if these harmonic
components are in phase. Likewise, sequentially phased modes can be excited by sequentially
phased ith harmonics of the excitations. Accordingly, in-phase modes at frequencies f2 and f6 can
be excited only by the even harmonics (i ¼ even) when f2 � ifm or f6 � ifm. In addition,
sequentially phased modes at f3 ¼ f4 ¼ f5 can be excited by the odd harmonics (i ¼ odd) when
f3 � ifm. Going back to Fig. 7, the first five resonance peaks can be stated to correspond to the
resonance frequencies of f2 � 4fm, f6 � 6fm, f2 � 2fm, f6 � 4fm and f3 � 3fm.

One other feature of the forced responses shown in Fig. 7 is that the amplitude curves are not
continuous. In both figures, sudden changes (jumps) in amplitude are observed (shown by arrows)
near resonance peaks of f2 � 4fm, f2 � 2fm, f6 � 4fm and f3 � 3fm. In addition, the amplitudes
near f2 � 2fm are different depending on whether the speed is increased or decreased. There are
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two different stable motions within the speed range of Xin 2 ½7475; 8000� rpm. When the speed is
increased from Xin ¼ 8000 to the next speed increment of Xin ¼ 8150 rpm, F ðrmsÞ

s=p suddenly jumps

up from 119 to 206 N/mm FW. Similarly, when Xin is reduced from Xin ¼ 8150 rpm, F ðmÞ
s=p con-
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tinues to increase until Xin ¼ 7450 rpm when F ðrmsÞ
s=p jumps down suddenly from 233 to 65 N/mm

FW. Such softening type nonlinear behavior was predicted and shown to exist experimentally [24]
for single spur gear pairs. It was demonstrated that, near the resonance peak, dynamic force
amplitudes can exceed the static (mean) force transmitted by the gear mesh, causing separation of
teeth during a portion of the gear mesh cycle, effectively changing the gear mesh stiffness in a
softening manner. In order to check whether any tooth separations take place here as well, tooth
force time histories F ðmÞ

r=p corresponding to upper branch solutions at Xin ¼ 7525, 8500 and 9000
rpm are shown in Fig. 8. In Fig. 8(a) at Xin ¼ 9000 rpm, F ðmÞ

r=p is zero for a small duration in each
mesh cycles, indicating that about 7% of each mesh cycle is when the teeth of planet-ring meshes
are separated (not in contact). This phenomenon is more obvious as one move to the left on the
upper branch towards the jump-down frequency. For instance, tooth separations take about 29%
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of the meshing cycle when Xin ¼ 8500 rpm while it is nearly 42% when Xin ¼ 7525 rpm. This
indicates that the degree of nonlinearity is increased as one approaches the jump down frequency
from the right. Other nonlinear phenomena including sub-harmonic motions and chaos were also
found in earlier studies of single gear pairs [24]. The planetary gear set studied here seems to
exhibit such behavior as well. For instance, near the resonance peak of f3 � 3fm, sub-harmonic
and chaotic motions were also predicted for the same example system [25].
3.2. Influence of wear on dynamic gear mesh forces

In order to quantify the influence of surface wear on the dynamic behavior, the same baseline
planetary gear set is considered now with the predicted worn profiles shown in Fig. 4. The steady
state dynamic gear mesh are predicted at three levels of surface wear, j ¼ 2, 4 and 6, and com-
pared to the response corresponding to the baseline case of no surface wear j ¼ 0.

Fig. 9 illustrates the change of F ðmÞ
s=p time histories with j at Xin ¼ 2750 rpm. Here F ðmÞ

s=p changes
significantly with the wear amount. Both peak-to-peak amplitudes and the shape of the wave-
forms are altered as j is increased. Harmonic amplitudes of F ðmÞ

s=p are plotted in Fig. 9(e) to show
that the fundamental harmonic amplitude i ¼ 1 is influenced the most by the surface wear. While
F ð1Þ
s=p ¼ 13 N per mm FW when j ¼ 0, it is about 30 N per mm FW when j ¼ 6. The higher

harmonic amplitudes (i > 1) are increased slightly with increased j. Because of this, the increase

in the rms value F ðrmsÞ
s=p can be attributed to the increase in the fundamental harmonic. This is

indeed the typical behavior observed at Xin values away from any of the resonance peaks, sug-
gesting that the shape of the worn surface profile in off-resonance regions impacts the funda-
mental harmonic of the response the most.

This is not the case near the resonance peaks. Since each resonance peak is dictated by a
harmonic order other than the fundamental harmonic in this case, the typical increases in i ¼ 1
component with j appears to have a secondary influence. An example of this is shown in Fig. 10
at Xin ¼ 13; 500 rpm near the resonance peak at f3 � 3fm. In this case, while the peak-to-peak gear
mesh order amplitudes increase with j, the increase in the rms value is mostly due to the i ¼ 3
harmonic component.

In Fig. 11, forced response curves of F ðrmsÞ
s=p and F ðrmsÞ

r=p for j ¼ 2, 4 and 6 are compared to the
baseline curves (j ¼ 0) shown earlier in Fig. 7. One observation from these figures is that, in the
off-resonance regions, F ðrmsÞ

s=p and F ðrmsÞ
r=p get consistently larger as the wear amount (j value) is

increased, primarily due to an increase in the fundamental harmonic amplitude. For instance, at
Xin ¼ 2000, F ðrmsÞ

j=p values are almost doubled for j ¼ 6 compared to the baseline response. This
suggests that both fatigue life and noise behavior of the planetary gear set away from the reso-
nances are influenced significantly by surface wear. Similarly, a number of new resonance peaks
are created with increased wear as the ones at 3000 and 7000 rpm. Meanwhile such influence does
not exist at the resonance frequencies, especially when the tooth separations occur. For instance
the amplitudes of upper branch motions of f2 � 2fm are somewhat reduced with an increase in
j value.

Finally, F ðmÞ
r=p time histories for j ¼ 0, 2, 4 and 6 are compared in Fig. 12 at Xin ¼ 8000 rpm. The

baseline system (j ¼ 0) exhibits loss of contact of gear teeth as shown in Fig. 12(a). This loss of
contact situation remains relatively unchanged as j is increased. The nonlinear behavior dictated
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by the tooth separations is maintained with very little change suggesting that the surface wear
has a secondary influence on the nonlinear response.
4. Conclusions

In this study, a computational model of a planetary gear set was employed to study the
influence of surface wear in the dynamic behavior of a typical automotive automatic transmission
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planetary gear set. The overall computational scheme combines a gear wear prediction model that
gives geometric description of contacting tooth surfaces having wear and a deformable-body
dynamic model of a planetary gear set. The wear model employs a quasi-static gear contact
mechanics model to compute contact pressures and Archard’s wear model to determine the wear
depth distributions. The worn surfaces were input into the dynamic model to quantify the impact
of wear on gear tooth and mesh dynamic forces. It was shown that a planetary gear set is
inherently nonlinear, and exhibits softening type nonlinear behavior near its resonance peaks,
characterized by sudden jumps of dynamic gear mesh force amplitudes. A sun gear experiences the
largest amount of wear, compared to other gears in the system as the maximum wear locations are
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in the dedendum of the sun gear. It is also observed that the tooth surface wear influences the
fundamental harmonic of the gear mesh forces the most. While this influence is evident in both
resonance and off-resonance regions of the forced response, the impact of wear is limited in the
resonance regions dictated by higher harmonics. It is also concluded that wear has a negligible



mesh cycles

0

150

300

450

600

750

900

0 1 2 3 0 1 2 3

0

150

300

450

600

750

900
(a) (b)

(c) (d)][

)(
/

N

F m
pr

Fig. 12. Comparison of F ðmÞ
r=p at Xin ¼ 8000 rpm near the resonance peak of f2 ¼ 2fm for (a) j ¼ 0, (b) j ¼ 2, (c) j ¼ 4,

and (d) j ¼ 6.

714 C. Yuksel, A. Kahraman / Mechanism and Machine Theory 39 (2004) 695–715
influence on the nonlinear behavior as nearly the same type of tooth separations were observed
with or without surface wear.
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